
Abaqus Scripting User’s Guide

Abaqus ID:
Printed on:

SCRIPTING USER’S GUIDE
ABAQUS 2016

Abaqus Scripting User’s Guide

Abaqus ID:
Printed on:

Legal Notices
Abaqus, the 3DS logo, and SIMULIA are commercial trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the United States
and/or other countries. Use of any Dassault Systèmes or its subsidiaries trademarks is subject to their express written approval.

Abaqus and this documentation may be used or reproduced only in accordance with the terms of the software license agreement signed by the customer, or,
absent such an agreement, the then current software license agreement to which the documentation relates.

This documentation and the software described in this documentation are subject to change without prior notice.

Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation.

© Dassault Systèmes, 2015

Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning
trademarks, copyrights, and licenses, see the Legal Notices in the Abaqus 2016 Installation and Licensing Guide.

Abaqus ID:
Printed on:

Preface

This section lists various resources that are available for help with using Abaqus Unified FEA software.

Support

Both technical software support (for problems with creating a model or performing an analysis) and systems
support (for installation, licensing, and hardware-related problems) for Abaqus are offered through a global
network of support offices, as well as through our online support system. Contact information for our
regional offices is accessible from SIMULIA→Locations at www.3ds.com/simulia. The online support
system is accessible by selecting the SUBMIT A REQUEST link at Support - Dassault Systèmes
(http://www.3ds.com/support).

Online support

Dassault Systèmes provides a knowledge base of questions and answers, solutions to questions that we have
answered, and guidelines on how to use Abaqus, Engineering Process Composer, Isight, Tosca, fe-safe, and
other SIMULIA products. The knowledge base is available by using the Search our Knowledge option on
www.3ds.com/support (http://www.3ds.com/support).

By using the online support system, you can also submit new requests for support. All support/service
requests are tracked. If you contact us by means outside the system to discuss an existing support problem
and you know the support request number, please mention it so that we can query the support system to see
what the latest action has been.

Training

All SIMULIA regional offices offer regularly scheduled public training classes. The courses are offered in
a traditional classroom form and via the Web. We also provide training seminars at customer sites. All
training classes and seminars include workshops to provide as much practical experience with Abaqus as
possible. For a schedule and descriptions of available classes, see the Training link at www.3ds.com/products-
services/simulia (www.3ds.com/products-services/simulia) or call your support office.

Feedback

We welcome any suggestions for improvements to Abaqus software, the support tool, or documentation.
We will ensure that any enhancement requests you make are considered for future releases. If you wish to
make a suggestion about the service or products, refer to www.3ds.com/simulia. Complaints should be made
by contacting your support office or by visiting SIMULIA→Quality Assurance at www.3ds.com/simulia
(www.3ds.com/simulia).

Abaqus ID:
Printed on:

Abaqus ID:
Printed on:

CONTENTS

Contents

PART I AN INTRODUCTION TO THE Abaqus Scripting Interface

1. An overview of the Abaqus Scripting User’s Guide

2. Introduction to the Abaqus Scripting Interface

Abaqus/CAE and the Abaqus Scripting Interface 2.1

How does the Abaqus Scripting Interface interact with Abaqus/CAE? 2.2

3. Simple examples

Creating a part 3.1

Reading from an output database 3.2

Summary 3.3

PART II USING THE Abaqus Scripting Interface

4. Introduction to Python

Python and Abaqus 4.1

Python resources 4.2

Using the Python interpreter 4.3

Object-oriented basics 4.4

The basics of Python 4.5

Programming techniques 4.6

Further reading 4.7

5. Using Python and the Abaqus Scripting Interface

Executing scripts 5.1

Abaqus Scripting Interface documentation style 5.2

Abaqus Scripting Interface data types 5.3

Object-oriented programming and the Abaqus Scripting Interface 5.4

Error handling in the Abaqus Scripting Interface 5.5

Extending the Abaqus Scripting Interface 5.6

6. Using the Abaqus Scripting Interface with Abaqus/CAE

The Abaqus object model 6.1

i

Abaqus ID:cmd-toc

Printed on: Fri June 19 -- 9:41:44 2015

CONTENTS

Copying, deleting, and renaming Abaqus Scripting Interface objects 6.2

Abaqus/CAE sequences 6.3

Namespace 6.4

Specifying what is displayed in the viewport 6.5

Specifying a region 6.6

Prompting the user for input 6.7

Interacting with Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD 6.8

Using Abaqus Scripting Interface commands in your environment file 6.9

PART III THE Abaqus PYTHON DEVELOPMENT ENVIRONMENT

7. Using the Abaqus Python development environment

An overview of the Abaqus Python development environment 7.1

Abaqus PDE basics 7.2

Using the Abaqus PDE 7.3

PART IV PUTTING IT ALL TOGETHER: EXAMPLES

8. Abaqus Scripting Interface examples

Reproducing the cantilever beam tutorial 8.1

Generating a customized plot 8.2

Investigating the skew sensitivity of shell elements 8.3

Editing display preferences and GUI settings 8.4

PART V ACCESSING AN OUTPUT DATABASE

9. Using the Abaqus Scripting Interface to access an output database

What do you need to access the output database? 9.1

How the object model for the output database relates to commands 9.2

Object model for the output database 9.3

Executing a script that accesses an output database 9.4

Reading from an output database 9.5

Writing to an output database 9.6

Exception handling in an output database 9.7

Computations with Abaqus results 9.8

Improving the efficiency of your scripts 9.9

Example scripts that access data from an output database 9.10

ii

Abaqus ID:cmd-toc

Printed on: Fri June 19 -- 9:41:44 2015

CONTENTS

10. Using C++ to access an output database

Overview 10.1

What do you need to access the output database? 10.2

Abaqus Scripting Interface documentation style 10.3

How the object model for the output database relates to commands 10.4

Object model for the output database 10.5

Compiling and linking your C++ source code 10.6

Accessing the C++ interface from an existing application 10.7

The Abaqus C++ API architecture 10.8

Utility interface 10.9

Reading from an output database 10.10

Writing to an output database 10.11

Exception handling in an output database 10.12

Computations with Abaqus results 10.13

Improving the efficiency of your scripts 10.14

Example programs that access data from an output database 10.15

iii

Abaqus ID:cmd-toc

Printed on: Fri June 19 -- 9:41:44 2015

Part I: An introduction to the Abaqus Scripting
Interface
The Abaqus Scripting Interface is an application programming interface (API) to the models and data used by
Abaqus. The Abaqus Scripting Interface is an extension of the Python object-oriented programming language;
Abaqus Scripting Interface scripts are Python scripts. You can use the Abaqus Scripting Interface to do the
following:

• Create and modify the components of an Abaqus model, such as parts, materials, loads, and steps.
• Create, modify, and submit Abaqus analysis jobs.
• Read from and write to an Abaqus output database.
• View the results of an analysis.

You use the Abaqus Scripting Interface to access the functionality of Abaqus/CAE from scripts (or programs).
(The Visualization module of Abaqus/CAE is also licensed separately as Abaqus/Viewer; therefore, the
Abaqus Scripting Interface can also be used to access the functionality of Abaqus/Viewer.) Because the
Abaqus Scripting Interface is a customized extension of standard Python, further extension of Abaqus base
types to create user-defined classes is not allowed.

This section provides an introduction to the Abaqus Scripting Interface. The following topics are
covered:

• Chapter 1, “An overview of the Abaqus Scripting User’s Guide”
• Chapter 2, “Introduction to the Abaqus Scripting Interface”
• Chapter 3, “Simple examples”

Abaqus ID:
Printed on:

AN OVERVIEW OF THE Abaqus SCRIPTING USER’S GUIDE

1. An overview of the Abaqus Scripting User’s Guide

The Abaqus Scripting User’s Guide takes you through the process of understanding the Python
programming language and the Abaqus Scripting Interface so that you can write your own programs.
It also describes how you use the Abaqus Scripting Interface and the C++ application programming
interface (API) to access an Abaqus output database. The guide consists of the following sections:

An introduction to the Abaqus Scripting Interface

This section provides an overview of the Abaqus Scripting Interface and describes how
Abaqus/CAE executes scripts.

Simple examples

Two simple examples are provided to introduce you to programming with the Abaqus Scripting
Interface.

• Creating a part.
• Reading from an output database.

An introduction to Python

This section is intended as a basic introduction to the Python programming language and is not an
exhaustive description of the language. There are several books on the market that describe Python,
and these books are listed as references. Additional resources, such as Python-related sites, are also
listed.

Using Python and the Abaqus Scripting Interface

This section describes the Abaqus Scripting Interface in more detail. The documentation style used
in the command reference is explained, and important Abaqus Scripting Interface concepts such as
data types and error handling are introduced.

Using the Abaqus Scripting Interface with Abaqus/CAE

This section describes how you use the Abaqus Scripting Interface to control Abaqus/CAE models
and analysis jobs. The Abaqus object model is introduced, along with techniques for specifying
a region and reading messages from an analysis product (Abaqus/Standard, Abaqus/Explicit, or
Abaqus/CFD). You can skip this section of the guide if you are not working with Abaqus/CAE.

Example scripts

This section provides a set of example scripts that lead you through the cantilever beam tutorial
found in Appendix B, “Creating and Analyzing a SimpleModel in Abaqus/CAE,” of Getting Started
with Abaqus/CAE. Additional examples are provided that read from an output database, display a
contour plot, and print a contour plot from each step of the analysis. The final example illustrates
how you can read from a model database created by Abaqus/CAE, parameterize the model, submit
a set of analysis jobs, and generate results from the resulting output databases.

1–1

Abaqus ID:
Printed on:

AN OVERVIEW OF THE Abaqus SCRIPTING USER’S GUIDE

Using the Abaqus Scripting Interface to access an output database

When you execute an analysis job, Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD store the
results of the analysis in an output database (.odb file) that can be viewed in the Visualization
module of Abaqus/CAE or in Abaqus/Viewer. This section describes how you use the Abaqus
Scripting Interface to access the data stored in an output database.

You can do the following with the Abaqus Scripting Interface:

• Read model data describing the geometry of the parts and the assembly; for example, nodal
coordinates, element connectivity, and element type and shape.

• Read model data describing the sections and materials and where they are used in an assembly.
• Read field output data from selected steps, frames, and regions.
• Read history output data.
• Operate on field output and history output data.
• Write model data, field output data, and history data to an existing output database or to a new
output database.

Using C++ to access an output database

This section describes how you use the C++ language to access an application programming
interface (API) to the data stored in an output database. The functionality of the C++ API is
identical to the Abaqus Scripting Interface API; however, the interactive nature of the Abaqus
Scripting Interface and its integration with Abaqus/CAE makes it easier to use and program. The
C++ interface is aimed at experienced C++ programmers who want to bypass the Abaqus Scripting
Interface for performance considerations. The C++ API offers faster access to the output database,
although this is a consideration only if you need to access large amounts of data.

1–2

Abaqus ID:
Printed on:

Abaqus/CAE AND THE Abaqus SCRIPTING INTERFACE

2. Introduction to the Abaqus Scripting Interface

The following topics are covered:

• “Abaqus/CAE and the Abaqus Scripting Interface,” Section 2.1
• “How does the Abaqus Scripting Interface interact with Abaqus/CAE?,” Section 2.2

2.1 Abaqus/CAE and the Abaqus Scripting Interface

When you use the Abaqus/CAE graphical user interface (GUI) to create a model and to visualize the
results, commands are issued internally by Abaqus/CAE after every operation. These commands reflect
the geometry you created along with the options and settings you selected from each dialog box. The
GUI generates commands in an object-oriented programming language called Python. The commands
issued by the GUI are sent to the Abaqus/CAE kernel. The kernel interprets the commands and uses the
options and settings to create an internal representation of your model. The kernel is the brains behind
Abaqus/CAE. The GUI is the interface between the user and the kernel.

The Abaqus Scripting Interface allows you to bypass the Abaqus/CAE GUI and communicate
directly with the kernel. A file containing Abaqus Scripting Interface commands is called a script. You
can use scripts to do the following:

• To automate repetitive tasks. For example, you can create a script that executes when a user starts
an Abaqus/CAE session. Such a script might be used to generate a library of standard materials.
As a result, when the user enters the Property module, these materials will be available. Similarly,
the script might be used to create remote queues for running analysis jobs, and these queues will be
available in the Job module.

• To perform a parametric study. For example, you can create a script that incrementally modifies the
geometry of a part and analyzes the resulting model. The same script can read the resulting output
databases, display the results, and generate annotated hard copies from each analysis.

• Create and modify the model databases and models that are created interactively when you work
with Abaqus/CAE. The Abaqus Scripting Interface is an application programming interface (API)
to your model databases and models. For a discussion of model databases and models, see “What
is an Abaqus/CAE model database?,” Section 9.1 of the Abaqus/CAE User’s Guide, and “What is
an Abaqus/CAE model?,” Section 9.2 of the Abaqus/CAE User’s Guide.

• Access the data in an output database. For example, you may wish to do your own postprocessing
of analysis results. You can write your own data to an output database and use the Visualization
module of Abaqus/CAE to view its contents.

The Abaqus Scripting Interface is an extension of the popular object-oriented language called
Python. Any discussion of the Abaqus Scripting Interface applies equally to Python in general, and the
Abaqus Scripting Interface uses the syntax and operators required by Python.

2–1

Abaqus ID:
Printed on:

HOW DOES THE Abaqus SCRIPTING INTERFACE INTERACT WITH Abaqus/CAE?

2.2 How does the Abaqus Scripting Interface interact with
Abaqus/CAE?

Figure 2–1 illustrates how Abaqus Scripting Interface commands interact with the Abaqus/CAE kernel.

GUI

command
line

interface
(CLI)

script

Python
interpreter

replay
files

Abaqus/CAE
kernel

commands

input file

Abaqus/Standard
Abaqus/Explicit

output database

Abaqus/CAE

Abaqus/Design
Abaqus/CFD

Figure 2–1 Abaqus Scripting Interface commands and Abaqus/CAE.

Abaqus Scripting Interface commands can be issued to the Abaqus/CAE kernel from one of the
following:

• The graphical user interface (GUI). For example, when you click OK or Apply in a dialog box,
the GUI generates a command based on your options and settings in the dialog box. You can use
the Macro Manager to record a sequence of the generated Abaqus Scripting Interface commands

2–2

Abaqus ID:
Printed on:

HOW DOES THE Abaqus SCRIPTING INTERFACE INTERACT WITH Abaqus/CAE?

in a macro file. For more information, see “Creating and running a macro,” Section 9.5.5 of the
Abaqus/CAE User’s Guide.

• Click in the lower left corner of the main window to display the command line interface (CLI).
You can type a single command or paste in a sequence of commands from another window; the
command is executed when you press [Enter]. You can type any Python command into the command
line; for example, you can use the command line as a simple calculator.

Note: When you are using Abaqus/CAE, errors and messages are posted into the message area.

Click in the lower left corner of the main window to display the message area.

• If you have more than a few commands to execute or if you are repeatedly executing the same
commands, it may be more convenient to store the set of statements in a file called a script. A
script contains a sequence of Python statements stored in plain ASCII format. For example, you
might create a script that opens an output database, displays a contour plot of a selected variable,
customizes the legend of the contour plot, and prints the resulting image on a local PostScript printer.
In addition, scripts are useful for starting Abaqus/CAE in a predetermined state. For example, you
can define a standard configuration for printing, create remote queues, and define a set of standard
materials and their properties.

You can use one of the following methods to run a script:

Running a script when you start Abaqus/CAE

You can run a script when you start an Abaqus/CAE session by typing the following command:

abaqus cae script=myscript.py

where myscript.py is the name of the file containing the script. The equivalent command
for Abaqus/Viewer is

abaqus viewer script=myscript.py

Arguments can be passed into the script by entering -- on the command line, followed by
the arguments separated by one or more spaces. These arguments will be ignored by the
Abaqus/CAE execution procedure, but they will be accessible within the script. For more
information, see “Abaqus/CAE execution,” Section 3.2.7 of the AbaqusAnalysis User’s Guide,
and “Abaqus/Viewer execution,” Section 3.2.8 of the Abaqus Analysis User’s Guide.

Running a script without the Abaqus/CAE GUI

You can run a script without the Abaqus/CAE GUI by typing the following command:

abaqus cae noGUI=myscript.py

where myscript.py is the name of the file containing the script. The equivalent command
for Abaqus/Viewer is

abaqus viewer noGUI=myscript.py

2–3

Abaqus ID:
Printed on:

HOW DOES THE Abaqus SCRIPTING INTERFACE INTERACT WITH Abaqus/CAE?

The Abaqus/CAE kernel is started without the GUI. Running a script without the
Abaqus/CAE GUI is useful for automating pre- or postanalysis processing tasks without the
added expense of running a display. When the script finishes running, the Abaqus/CAE kernel
terminates. If you execute a script without the GUI, the script cannot interact with the user,
monitor jobs, or generate animations. When running a script without the user interface, jobs
are always run interactively. If a job queue is specified, it will be ignored.

Running a script from the startup screen

When you start an Abaqus/CAE session, Abaqus displays the startup screen. You can run a
script from the startup screen by clicking Run Script. Abaqus displays the Run Script dialog
box, and you select the file containing the script.

Running a script from the File menu

You can run a script by selecting File→Run Script from the main menu bar. Abaqus displays
the Run Script dialog box, and you select the file containing the script.

Running a script from the command line interface

You can run a script from the command line interface (CLI) by typing the following command:

execfile('myscript.py')

where myscript.py is the name of the file containing the script and the file in this example
is in the current directory. Figure 2–2 shows an example script being run from the command
line interface.

Figure 2–2 Scripts can be run from the command line interface.

Click in the lower left corner of the main window to switch from the message area to the
command line interface.

2–4

Abaqus ID:
Printed on:

CREATING A PART

3. Simple examples

Programming with the Abaqus Scripting Interface is straightforward and logical. To illustrate how easy
it is to write your own programs, the following sections describe two simple Abaqus Scripting Interface
scripts.

• “Creating a part,” Section 3.1
• “Reading from an output database,” Section 3.2

You are not expected to understand every line of the examples; the terminology and the syntax will
become clearer as you read the detailed explanations in the following chapters. “Summary,” Section 3.3,
describes some of the principles behind programming with Python and the Abaqus Scripting Interface.

3.1 Creating a part

The first example shows how you can use an Abaqus/CAE script to replicate the functionality of
Abaqus/CAE. The script does the following:

• Creates a new model in the model database.
• Creates a two-dimensional sketch.
• Creates a three-dimensional, deformable part.
• Extrudes the two-dimensional sketch to create the first geometric feature of the part.
• Creates a new viewport.
• Displays a shaded image of the new part in the new viewport.

The new viewport and the shaded part are shown in Figure 3–1.
The example scripts from this guide can be copied to the user’s working directory by using the

Abaqus fetch utility:

abaqus fetch job=scriptName

where scriptName.py is the name of the script (see “Fetching sample input files,” Section 3.2.17 of the
Abaqus Analysis User’s Guide). Use the following command to retrieve the script for this example:

abaqus fetch job=modelAExample

Note: Abaqus does not install the sample scripts by default during the installation procedure. As a result,
if the Abaqus fetch utility fails to find the sample script, the script may be missing from your Abaqus
installation. Youmust rerun the installation procedure and request Abaqus sample problems from
the list of items to install.

3–1

Abaqus ID:
Printed on:

CREATING A PART

Figure 3–1 The example creates a new viewport and a part.

To run the program, do the following:

1. Start Abaqus/CAE by typing abaqus cae.

2. From the startup screen, select Run Script.

3. From the Run Script dialog box that appears, select modelAExample.py.

4. Click OK to run the script.

Note: If Abaqus/CAE is already running, you can run the script by selecting File→Run Script from
the main menu bar.

3.1.1 The example script
"""
modelAExample.py

A simple example: Creating a part.
"""

from abaqus import *
from abaqusConstants import *
backwardCompatibility.setValues(includeDeprecated=True,

reportDeprecated=False)

3–2

Abaqus ID:
Printed on:

CREATING A PART

import sketch
import part

myModel = mdb.Model(name='Model A')

mySketch = myModel.ConstrainedSketch(name='Sketch A',
sheetSize=200.0)

xyCoordsInner = ((-5 , 20), (5, 20), (15, 0),
(-15, 0), (-5, 20))

xyCoordsOuter = ((-10, 30), (10, 30), (40, -30),
(30, -30), (20, -10), (-20, -10),
(-30, -30), (-40, -30), (-10, 30))

for i in range(len(xyCoordsInner)-1):
mySketch.Line(point1=xyCoordsInner[i],

point2=xyCoordsInner[i+1])

for i in range(len(xyCoordsOuter)-1):
mySketch.Line(point1=xyCoordsOuter[i],

point2=xyCoordsOuter[i+1])

myPart = myModel.Part(name='Part A', dimensionality=THREE_D,
type=DEFORMABLE_BODY)

myPart.BaseSolidExtrude(sketch=mySketch, depth=20.0)

myViewport = session.Viewport(name='Viewport for Model A',
origin=(10, 10), width=150, height=100)

myViewport.setValues(displayedObject=myPart)

myViewport.partDisplay.setValues(renderStyle=SHADED)

3.1.2 How does the script work?

This section explains each portion of the example script.

3–3

Abaqus ID:
Printed on:

CREATING A PART

from abaqus import *

This statement makes the basic Abaqus objects accessible to the script. It also provides access to a default
model database using the variable named mdb. The statement, from abaqusConstants import
*, makes the Symbolic Constants defined by the Abaqus Scripting Interface available to the script.

import sketch
import part

These statements provide access to the objects related to sketches and parts. sketch and part are
called Python modules.

The next statement in the script is shown in Figure 3–2. You can read this statement from right to
left as follows:

1. Create a new model named Model A.

2. Store the new model in the model database mdb.

3. Assign the new model to a variable called myModel.

myModel = mdb.Model(name='Model A')

1. Create a new model
 named 'Model A'

2. Store the new model in the
 model database mdb

3. Assign a variable
 to the new model

Figure 3–2 Creating a new model.

mySketch = myModel.ConstrainedSketch(name='Sketch A', sheetSize=200.0)

This statement creates a new sketch object named Sketch A in myModel. The variable mySketch
is assigned to the new sketch. The sketch will be placed on a sheet 200 units square. Note the following:

• A command that creates something (an “object” in object-oriented programming terms) is called
a constructor and starts with an uppercase character. You have seen the Model and Sketch
commands that create Model objects and Sketch objects, respectively.

• The command uses the variable myModel that we created in the previous statement. Using
variables with meaningful names in a script makes the script easier to read and understand.

xyCoordsInner = ((-5 , 20), (5, 20), (15, 0),
(-15, 0), (-5, 20))

3–4

Abaqus ID:
Printed on:

CREATING A PART

xyCoordsOuter = ((-10, 30), (10, 30), (40, -30),
(30, -30), (20, -10), (-20, -10),
(-30, -30), (-40, -30), (-10, 30))

These two statements define the X- and Y-coordinates of the vertices that form the inner and outer profile
of the letter “A.” The variable xyCoordsInner refers to the vertices of the inner profile, and the
variable xyCoordsOuter refers to the vertices of the outer profile.

for i in range(len(xyCoordsInner)-1):
mySketch.Line(point1=xyCoordsInner[i],

point2=xyCoordsInner[i+1])

This loop creates the inner profile of the letter “A” in mySketch. Four lines are created using the X-
and Y-coordinates of the vertices in xyCoordsInner to define the beginning point and the end point
of each line. Note the following:

• Python uses only indentation to signify the start and the end of a loop. Python does not use the
brackets {} of C and C++.

• The len() function returns the number of coordinate pairs in xyCoordsInner—five in our
example.

• The range() function returns a sequence of integers. In Python, as in C and C++, the index of an
array starts at zero. In our example range(4) returns 0,1,2,3. For each iteration of the loop
in the example the variable i is assigned to the next value in the sequence of integers.

Similarly, a second loop creates the outer profile of the “A” character.

myPart = myModel.Part(name='Part A',
dimensionality=THREE_D, type=DEFORMABLE_BODY)

This statement creates a three-dimensional, deformable part named Part A in myModel. The new part
is assigned to the variable myPart.

myPart.BaseSolidExtrude(sketch=mySketch, depth=20.0)

This statement creates a base solid extrude feature in myPart by extruding mySketch through a depth
of 20.0.

myViewport = session.Viewport(name='Viewport for Model A',
origin=(20,20), width=150, height=100)

3–5

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

This statement creates a new viewport named Viewport for Model A in session. The new
viewport is assigned to the variable myViewport. The origin of the viewport is at (20, 20), and it has
a width of 150 and a height of 100.

myViewport.setValues(displayedObject=myPart)

This statement tells Abaqus to display the new part, myPart, in the new viewport, myViewport.

myViewport.partDisplayOptions.setValues(renderStyle=SHADED)

This statement sets the render style of the part display options in myViewport to shaded. As a result,
myPart appears in the shaded render style.

3.2 Reading from an output database

The second example shows how you can use the Abaqus Scripting Interface to read an output database,
manipulate the data, and display the results using the Visualization module in Abaqus/CAE. The Abaqus
Scripting Interface allows you to display the data even though you have not written it back to an output
database. The script does the following:

• Opens the tutorial output database.
• Creates variables that refer to the first and second steps in the output database.
• Creates variables that refer to the last frame of the first and second steps.
• Creates variables that refer to the displacement field output in the last frame of the first and second
steps.

• Creates variables that refer to the stress field output in the last frame of the first and second steps.
• Subtracts the displacement field output from the two steps and puts the result in a variable called
deltaDisplacement.

• Subtracts the stress field output from the two steps and puts the result in a variable called
deltaStress.

• Selects deltaDisplacement as the default deformed variable.
• Selects the von Mises invariant of deltaStress as the default field output variable.
• Plots a contour plot of the result.

The resulting contour plot is shown in Figure 3–3.
Use the following commands to retrieve the script and the output database that is read by the script:

abaqus fetch job=odbExample
abaqus fetch job=viewer_tutorial

3–6

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

(Avg: 75%)
S − S, Mises

+7.711e−05
+3.414e−03
+6.750e−03
+1.009e−02
+1.342e−02
+1.676e−02
+2.010e−02
+2.343e−02
+2.677e−02
+3.011e−02
+3.344e−02
+3.678e−02
+4.012e−02

Step: Session Step, Step for Viewer non−persistent fields
Session Frame
Primary Var: S − S, Mises
Deformed Var: U − U Deformation Scale Factor: +1.000e+00

Figure 3–3 The resulting contour plot.

3.2.1 The example script
"""
odbExample.py

Script to open an output database, superimpose variables
from the last frame of different steps, and display a contour
plot of the result.
"""

from abaqus import *
from abaqusConstants import *
import visualization

myViewport = session.Viewport(name='Superposition example',
origin=(10, 10), width=150, height=100)

3–7

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

Open the tutorial output database.

myOdb = visualization.openOdb(path='viewer_tutorial.odb')

Associate the output database with the viewport.

myViewport.setValues(displayedObject=myOdb)

Create variables that refer to the first two steps.

firstStep = myOdb.steps['Step-1']
secondStep = myOdb.steps['Step-2']

Read displacement and stress data from the last frame
of the first two steps.

frame1 = firstStep.frames[-1]
frame2 = secondStep.frames[-1]

displacement1 = frame1.fieldOutputs['U']
displacement2 = frame2.fieldOutputs['U']

stress1 = frame1.fieldOutputs['S']
stress2 = frame2.fieldOutputs['S']

Find the added displacement and stress caused by
the loading in the second step.

deltaDisplacement = displacement2 - displacement1
deltaStress = stress2 - stress1

Create a Mises stress contour plot of the result.

myViewport.odbDisplay.setDeformedVariable(deltaDisplacement)

myViewport.odbDisplay.setPrimaryVariable(field=deltaStress,
outputPosition=INTEGRATION_POINT,
refinement=(INVARIANT, 'Mises'))

myViewport.odbDisplay.display.setValues(plotState=(
CONTOURS_ON_DEF,))

3–8

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

3.2.2 How does the script work?
This section explains each portion of the example script.

from abaqus import *
from abaqusConstants import *

These statements make the basic Abaqus objects accessible to the script as well as all the Symbolic
Constants defined in the Abaqus Scripting Interface.

import visualization

This statement provides access to the commands that replicate the functionality of the Visualization
module in Abaqus/CAE (Abaqus/Viewer).

myViewport = session.Viewport(name='Superposition example')

This statement creates a new viewport named Superposition example in the session. The new
viewport is assigned to the variable myViewport. The origin and the size of the viewport assume the
default values.

odbPath = 'viewer_tutorial.odb'

This statement creates a path to the tutorial output database.

myOdb = session.openOdb(path=odbPath)

This statement uses the path variable odbPath to open the output database and to assign it to the variable
myOdb.

myViewport.setValues(displayedObject=myOdb)

This statement displays the default plot of the output database in the viewport.

firstStep = myOdb.steps['Step-1']
secondStep = myOdb.steps['Step-2']

These statements assign the first and second steps in the output database to the variables firstStep
and secondStep.

3–9

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

frame1 = firstStep.frames[-1]
frame2 = secondStep.frames[-1]

These statements assign the last frame of the first and second steps to the variablesframe1 andframe2.
In Python an index of 0 refers to the first item in a sequence. An index of −1 refers to the last item in a
sequence.

displacement1 = frame1.fieldOutputs['U']
displacement2 = frame2.fieldOutputs['U']

These statements assign the displacement field output in the last frame of the first and second steps to
the variables displacement1 and displacement2.

stress1 = frame1.fieldOutputs['S']
stress2 = frame2.fieldOutputs['S']

Similarly, these statements assign the stress field output in the last frame of the first and second steps to
the variables stress1 and stress2.

deltaDisplacement = displacement2 - displacement1

This statement subtracts the displacement field output from the last frame of the two steps and puts the
resulting field output into a new variable deltaDisplacement.

deltaStress = stress2 - stress1

Similarly, this statement subtracts the stress field output and puts the result in the variable
deltaStress.

myViewport.odbDisplay.setDeformedVariable(deltaDisplacement)

This statement uses deltaDisplacement, the displacement field output variable that we created
earlier, to set the deformed variable. This is the variable that Abaqus will use to display the shape of the
deformed model.

myViewport.odbDisplay.setPrimaryVariable(field=deltaStress,
outputPosition=INTEGRATION_POINT,
refinement=(INVARIANT, 'Mises'))

This statement uses deltaStress, our stress field output variable, to set the primary variable. This is
the variable that Abaqus will display in a contour or symbol plot.

3–10

Abaqus ID:
Printed on:

SUMMARY

myViewport.odbDisplay.display.setValues(plotState=(CONTOURS_ON_DEF,))

The final statement sets the plot state to display a contour plot on the deformed model shape.

3.3 Summary

The examples illustrate how a script can operate on a model in a model database or on the data stored in
an output database. The details of the commands in the examples are described in later sections; however,
you should note the following:

• You can run a script from the Abaqus/CAE startup screen when you start a session. After a session
has started, you can run a script from the File→Run Script menu or from the command line
interface.

• A script is a sequence of commands stored in ASCII format and can be edited with a standard text
editor.

• A set of example scripts are provided with Abaqus. Use the abaqus fetch command to retrieve
a script and any associated files.

• You must use the import statement to make the required set of Abaqus Scripting Interface
commands available. For example, the statement import part provides the commands that
create and operate on parts.

• A command that creates something (an “object” in object-oriented programming terms) is called a
constructor and starts with an uppercase character. For example, the following statement uses the
Model constructor to create a model object.

myModel = mdb.Model(name='Model A')

The model object created is

mdb.models['Model A']

• You can use a variable to refer to an object. Variables make your scripts easier to read and
understand. myModel refers to a model object in the previous example.

• A Python script can include a loop. The start and end of a loop is controlled by indentation in the
script.

• Python includes a set of built-in functions. For example, the len() function returns the length of
a sequence.

• You can use commands to replicate any operation that can be performed interactively when you are
working with Abaqus/CAE; for example, creating a viewport, displaying a contour plot, and setting
the step and the frame to display.

3–11

Abaqus ID:
Printed on:

Part II: Using the Abaqus Scripting Interface
This section provides an introduction to the Python programming language and a discussion of how you can
combine Python statements and the Abaqus Scripting Interface to create your own scripts. The following
topics are covered:

• Chapter 4, “Introduction to Python”
• Chapter 5, “Using Python and the Abaqus Scripting Interface”
• Chapter 6, “Using the Abaqus Scripting Interface with Abaqus/CAE”

Abaqus ID:
Printed on:

PYTHON AND Abaqus

4. Introduction to Python

This section provides a basic introduction to the Python programming language. You are encouraged to
try the examples and to experiment with Python statements. The Python language is used throughout
Abaqus, not only in the Abaqus Scripting Interface. Python is also used by Abaqus/Design to perform
parametric studies and in the Abaqus/Standard, Abaqus/Explicit, Abaqus/CFD, and Abaqus/CAE
environment file. For more information, see Chapter 20, “Parametric Studies,” of the Abaqus Analysis
User’s Guide, and “Using the Abaqus environment settings,” Section 3.3.1 of the Abaqus Analysis
User’s Guide.

The following topics are covered:

• “Python and Abaqus,” Section 4.1
• “Python resources,” Section 4.2
• “Using the Python interpreter,” Section 4.3
• “Object-oriented basics,” Section 4.4
• “The basics of Python,” Section 4.5
• “Programming techniques,” Section 4.6
• “Further reading,” Section 4.7

4.1 Python and Abaqus

Python is the standard programming language for Abaqus products and is used in several ways.

• The Abaqus environment file uses Python statements.
• The parameter definitions on the data lines of the *PARAMETER option in the Abaqus input file
are Python statements.

• The parametric study capability of Abaqus requires the user to write and to execute a Python
scripting (.psf) file.

• Abaqus/CAE records its commands as a Python script in the replay (.rpy) file.
• You can execute Abaqus/CAE tasks directly using a Python script. You can execute a script from
Abaqus/CAE using the following:

– File→Run Script from the main menu bar.

– The Macro Manager.

– The command line interface (CLI).

• You can access the output database (.odb) using a Python script.

4–1

Abaqus ID:
Printed on:

PYTHON RESOURCES

4.2 Python resources

Python is an object-oriented programming language that is widely used in the software industry. A
number of resources are available to help you learn more about the Python programming language.

Python web sites

The official Python web site (www.python.org) contains a wealth of information on the Python
programming language and the Python community. For new Python programmers the web site
contains links to:
• General descriptions of the Python language.
• Comparisons between Python and other programming languages.
• An introduction to Python.
• Introductory tutorials.

The web site also contains a reference library of Python functions to which you will need to refer.

Python books

• Altom, Tim, Programming With Python, Prima Publishing, ISBN: 0761523340.

• Beazley, David, Python Essential Reference (2nd Edition), New Riders Publishing, ISBN:
0735710910.

• Brown, Martin, Python: The Complete Reference, McGraw-Hill, ISBN: 07212718X.

• Brown, Martin, Python Annotated Archives, McGraw-Hill, ISBN: 072121041.

• Chun, Wesley J., Core Python Programming, Prentice Hall, ISBN: 130260363.

• Deitel, Harvey M., Python: How to Program, Prentice Hall, ISBN: 130923613.

• Gauld, Alan, Learn To Program Using Python, Addison-Wesley, ISBN: 201709384.

• Harms, Daryl D., and Kenneth McDonald, Quick Python Book, Manning Publications
Company, ISBN: 884777740.

• Lie Hetland, Magnus, Practical Python, APress, ISBN: 1590590066.

• Lutz, Mark, Programming Python, O’Reilly & Associates, ISBN: 1565921976.

• Lutz, Mark, and David Ascher, Learning Python, Second Edition, O’Reilly & Associates,
ISBN: 0596002815.

• Lutz, Mark, and Gigi Estabrook, Python: Pocket Reference, O’Reilly & Associates, ISBN:
1565925009.

• Martelli, Alex, Python in a Nutshell, O’Reilly & Associates, ISBN: 0596001886.

• Martelli, Alex, and David Ascher, Python Cookbook, O’Reilly & Associates, ISBN:
0596001673.

• Van Laningham, Ivan, Sams Teach Yourself Python in 24 Hours, Sams Publishing, ISBN:
0672317354.

The books Python Essential Reference and Learning Python are recommended reading.

4–2

Abaqus ID:
Printed on:

USING THE PYTHON INTERPRETER

Python newsgroups

Discussions of Python programming can be found at:

• comp.lang.python
• comp.lang.python.announce

4.3 Using the Python interpreter

Python is an interpreted language. This means you can type a statement and view the results without
having to compile and link your scripts. Experimenting with Python statements is quick and easy. You
are encouraged to try the examples in these tutorials on your workstation, and you should feel free to
experiment with your own variations. To run the Python interpreter, do one of the following:

• If you have Abaqus installed on your Linux or Windows workstation, type abaqus python at
the system prompt. Python enters its interpretive mode and displays the >>> prompt.

You can enter Python statements at the >>> prompt. To see the value of a variable or expression,
type the variable name or expression at the Python prompt. To exit the Python interpreter, type [Ctrl]
+ D on Linux systems or [Ctrl] + Z[Enter] on Windows systems.

You can also use Python to run a script directly by typing abaqus python scriptname.py
at the system prompt. Abaqus will run the script through the Python interpreter and return you to the
system prompt. For an example of running a Python script using Abaqus, see “Creating functions,”
Section 4.6.1.

• You can also use the Python interpreter provided in the command line interface by Abaqus/CAE.
The command line is at the bottom of the Abaqus/CAE window and is shared with the message
area. Abaqus/CAE displays the Python >>> prompt in the command line interface.

Click in the lower left corner of the main window to display the command line interface.
You may want to drag the handle at the top of the command line interface to increase the number
of lines displayed.

4–3

Abaqus ID:
Printed on:

OBJECT-ORIENTED BASICS

If Abaqus/CAE displays newmessages while you are using the command line interface, the message
area tab turns red.

4.4 Object-oriented basics

You need to understand some of the fundamentals of object-oriented programming to understand the
terms used in this guide. The following is a brief introduction to the basic concepts behind object-oriented
programming.

Traditional procedural languages, such as Fortran and C, are based around functions or subroutines
that perform actions. A typical example is a subroutine that calculates the geometric center of a planar
part given the coordinates of each vertex.

In contrast, object-oriented programming languages, such as Python and C++, are based around
objects. An object encapsulates some data and functions that are used to manipulate those data. The data
encapsulated by an object are called the members of the object. The functions that manipulate the data
are called methods.

An object can be modeled from a real-world object, such as a tire; or an object can be modeled from
something more abstract, such as an array of nodes. For example, the data (or members) encapsulated by
a tire object are its diameter, width, aspect ratio, and price. The functions or methods encapsulated by the
tire object calculate how the tire deforms under load and how it wears during use. Members and methods
can be shared by more than one type of object; for example, a shock absorber has a price member and a
deformation method.

Classes are an important concept in object-oriented programming. Classes are defined by the
programmer, and a class defines members and the methods that operate on those members. An object
is an instance of a class. An object inherits the members and methods of the class from which it was
instanced. You should read a Python text book for a thorough discussion of classes, abstract base
classes, and inheritance.

4–4

Abaqus ID:
Printed on:

THE BASICS OF PYTHON

4.5 The basics of Python

The following sections introduce you to the basics of the Python language. The following topics are
covered:

• “Variable names and assignment,” Section 4.5.1
• “Python data types,” Section 4.5.2
• “Determining the type of a variable,” Section 4.5.3
• “Sequences,” Section 4.5.4
• “Sequence operations,” Section 4.5.5
• “Python None,” Section 4.5.6
• “Continuation lines and comments,” Section 4.5.7
• “Printing variables using formatted output,” Section 4.5.8
• “Control blocks,” Section 4.5.9

4.5.1 Variable names and assignment
The expression

>>> myName = 'Einstein'

creates a variable called myName that refers to a String object.
To see the value of a variable or expression, simply type the variable name or the expression at the

Python prompt, and press [Enter]. For example,

>>> myName = 'Einstein'
>>> myName
'Einstein'
>>> 3.0 / 4.0
0.75
>>> x = 3.0 / 4.0
>>> x
0.75

Python creates a variable when you assign a value to it. Python provides several forms of the
assignment statement; for example,

>>> myName = 'Einstein'
>>> myName, yourName = 'Einstein', 'Newton'
>>> myName = yourName = 'Einstein'

4–5

Abaqus ID:
Printed on:

THE BASICS OF PYTHON

The second line assigns the string ’Einstein’ to the variable myName and assigns the string
’Newton’ to the variable yourName. The third line assigns the string ’Einstein’ to both
myName and yourName.

The following naming rules apply:

• Variable names must start with a letter or an underscore character and can contain any number of
letters, digits, or underscores. load_3 and _frictionStep are legal variable names; 3load,
load_3$, and $frictionStep are not legal names. There is no limit on the length of a variable
name.

• Some words are reserved and cannot be used to name a variable; for example, print, while,
return, and class.

• Python is case sensitive. A variable named Load is different from a variable named load.
When you assign a variable in a Python program, the variable refers to a Python object, but the

variable is not an object itself. For example, the expression numSpokes=3 creates a variable that refers
to an integer object; however, numSpokes is not an object. You can change the object to which a
variable refers. numSpokes can refer to a real number on one line, an integer on the next line, and a
viewport on the next line.

The first example script in “Creating a part,” Section 3.1, created a model using the following
statement:

myModel = mdb.Model(name='Model A')

The constructor mdb.Model(name=’Model A’) creates an instance of a model, and this instance is
a Python object. The object created is mdb.models[’Model A’], and the variable myModel refers
to this object.

An object always has a type. In our example the type of mdb.models[’Model A’] is
Model. An object’s type cannot be changed. The type defines the data encapsulated by an object—its
members—and the functions that can manipulate those data—its methods. Unlike most programming
languages, you do not need to declare the type of a variable before you use it. Python determines the
type when the assignment statement is executed. The Abaqus Scripting Interface uses the term “object”
to refer to a specific Abaqus type as well as to an instance of that type; for example, a Model object
refers to a Model type and to an instance of a Model type.

4.5.2 Python data types
Python includes the following built-in data types:

Integer

To create variables called “i” and “j” that refer to integer objects, type the following at the Python
prompt:

>>> i = 20
>>> j = 64

4–6

Abaqus ID:
Printed on:

THE BASICS OF PYTHON

An integer is based on a C long and can be compared to a Fortran integer*4 or *8. For extremely
large integer values, you should declare a long integer. The size of a long integer is essentially
unlimited. The “L” at the end of the number indicates that it is a long integer.

>>> nodes = 2000000L
>>> bigNumber = 120L**21

Use int(n) to convert a variable to an integer; use long(n) to convert a variable to a long integer.

>>> load = 279.86
>>> iLoad = int(load)
>>> iLoad
279

>>> a = 2
>>> b = 64
>>> bigNumber = long(a)**b
>>> print 'bigNumber = ', bigNumber
bigNumber = 18446744073709551616

Note: All Abaqus Scripting Interface object types begin with an uppercase character; for example,
a Part or a Viewport. An integer is another kind of object and follows the same convention. The
Abaqus Scripting Interface refers to an integer object as an “Int.” Similarly, the Abaqus Scripting
Interface refers to a floating-point object as a “Float.”

Float

Floats represent floating-point numbers or real numbers. You can use exponential notation for floats.

>>> pi = 22.0/7.0
>>> r = 2.345e-6
>>> area = pi * r * r
>>> print 'Area = ', area
Area = 1.728265e-11

A float is based on a C double and can be compared to a Fortran real*8. Use float(n) to convert
a variable to a float.

Complex

Complex numbers use the “j” notation to indicate the imaginary part of the number. Python provides
methods to manipulate complex numbers. The conjugate method calculates the conjugate of a
complex number.

>>> a = 2 + 4j
>>> a.conjugate()
(2-4j)

4–7

Abaqus ID:
Printed on:

THE BASICS OF PYTHON

A complex number has two members, the real member and the imaginary member.

>>> a = 2 + 4j
>>> a.real
2.0
>>> a.imag
4.0

Python provides complex math functions to operate on complex variables. You need to import the
cmath module to use the complex square root function.

>>> import cmath
>>> y = 3 + 4j
>>> print cmath.sqrt(y)
(2+1j)

Remember, functions of a type are calledmethods; data of a type are calledmembers. In our example
conjugate is a method of a complex type; a.real refers to the real member of a complex type.

Sequences

Sequences include strings, lists, tuples, and arrays. Sequences are described in “Sequences,”
Section 4.5.4, and “Sequence operations,” Section 4.5.5.

4.5.3 Determining the type of a variable
You use the type() function to return the type of the object to which a variable refers.

>>> a = 2.375
>>> type(a)
<type 'float'>
>>> a = 1
>>> type(a)
<type 'int'>
>>> a = 'chamfer'
>>> type(a)
<type 'string'>

4.5.4 Sequences
Sequences are important and powerful data types in Python. A sequence is an object containing a
series of objects. There are three types of built-in sequences in Python—list, tuple, and string. In
addition, imported modules allow you to use arrays in your scripts. The following table describes the
characteristics of list, tuple, string, and array sequences.

4–8

Abaqus ID:
Printed on:

THE BASICS OF PYTHON

Type Mutable Homogeneous Methods Syntax

list Yes No Yes [9.0,’b’]

tuple No No No (’a’,45)

string No Yes Yes ’stress’

array Yes Yes Yes array((1.2,2.3),(2.5,5.8))

Mutable: Elements can be added, changed, and removed.
Homogeneous: Elements must be of the same type.
Methods: The type has methods that can be used to manipulate the sequence; for example, sort(),
reverse().
Syntax: The syntax used to create the sequence.

List

Lists are mutable heterogeneous sequences (anything that can be modified is called mutable). A list
can be a sequence of strings, integers, floats, or any combination of these. In fact, a list can contain
any type of object; for example,

>>> myIntegerList = [7,6,5,4]
>>> myFloatList = [7.1,6.5,5.3,4.8]

You can refer to individual items from a sequence using the index of the item. Indices start at
zero. Negative indices count backward from the end of a sequence.

>>> myList = [1,2,3]
>>> myList[0]
1
>>> myList[1] = 9
>>> myList
[1, 9, 3]
>>> myNewList = [1.0,2.0,myList]
>>> myNewList
[1.0, 2.0, [1, 9, 3]]
>>> myNewList[-1]
[1, 9, 3]

Lists are heterogeneous, which means they can contain objects of different type.

>>> myList=[1,2.5,'steel']

A list can contain other lists.

>>> myList=[[0,1,2],[3,4,5],[6,7,8]]
>>> myList[0]

4–9

Abaqus ID:
Printed on:

THE BASICS OF PYTHON

[0, 1, 2]
>>> myList[2]
[6,7,8]

myList[1][2] refers to the third item in the second list. Remember, indices start at zero.

>>> myList[1][2]
5

Python has built-in methods that allow you to operate on the items in a sequence.

>>> myList
[1, 9, 3]
>>> myList.append(33)
>>> myList
[1, 9, 3, 33]
>>> myList.remove(9)
>>> myList
[1, 3, 33]

The following are some additional built-in methods that operate on lists:

count()

Return the number of times a value appears in the list.

>>> myList = [0,1,2,1,2,3,2,3,4,3,4,5]
>>> myList.count(2)
3

index()

Return the index indicating the first time an item appears in the list.

>>> myList.index(5)
11
>>> myList.index(4)
8

insert()

Insert a new element into a list at a specified location.

>>> myList.insert(2,22)
>>> myList
[0, 1, 22, 2, 1, 2, 3, 2, 3, 4, 3, 4, 5]

4–10

Abaqus ID:
Printed on:

THE BASICS OF PYTHON

reverse()

Reverse the elements in a list.

>>> myList.reverse()
>>> myList
[5, 4, 3, 4, 3, 2, 3, 2, 1, 2, 22, 1, 0]

sort()

Sort the elements in a list.

>>> myList.sort()
>>> myList
[0, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 22]

Tuple

Tuples are very similar to lists; however, they are immutable heterogeneous sequences, whichmeans
that you cannot change them after you create them. You can think of a tuple as a list that cannot be
modified. Tuples have no methods; you cannot append items to a tuple, and you cannot modify or
delete the items in a tuple. The following statement creates an empty tuple:

myTuple = ()

The following statement creates a tuple with one element:

myTuple = (5.675,)

You can use the tuple() function to convert a list or a string to a tuple.

>>> myList = [1, 2, "stress", 4.67]
>>> myTuple = tuple(myList)
>>> print myTuple
(1, 2, 'stress', 4.67)
>>> myString = 'Failure mode'
>>> myTuple = tuple(myString)
>>> print myTuple
('F', 'a', 'i', 'l', 'u', 'r', 'e', ' ', 'm', 'o', 'd', 'e')

The following statements create a tuple and then try to change the value of an item in the tuple.
An AttributeError error message is generated because a tuple is immutable.

>>> myTuple = (1,2,3,4,5)
>>> type(myTuple)
<type 'tuple'>
>>> myTuple[2]=3
Traceback (innermost last):

4–11

Abaqus ID:
Printed on:

THE BASICS OF PYTHON

File "", line 1, in ?
AttributeError: __setitem__

String

Strings are immutable sequences of characters. Strings are defined by single or double quotation
marks. You can use the “+” operator to concatenate two strings and create a third string; for example,

>>> odbString = "Symbol plot from "
>>> odb = 'load1.odb'
>>> annotationString = odbString + odb
>>> print annotationString
Symbol plot from load1.odb

Note: You can also use the “+” operator to concatenate tuples and lists.

Python provides a set of functions that operate on strings.

>>> annotationString
'Symbol plot from load1.odb'
>>> annotationString.upper()
'SYMBOL PLOT FROM LOAD1.ODB'
>>> annotationString.split()
['Symbol', 'plot', 'from', 'load1.odb']

As with all sequences, you use negative indices to index backward from the end of a string.

>>> axis_label = 'maxstrain'
>>> axis_label[-1]
'n'

Use the built-in str function to convert an object to a string.

>>> myList = [8, 9, 10]
>>> str(myList)
'[8, 9, 10]'

Look at the standard Python documentation on the official Python web site (www.python.org) for
a list of common string operations. String functions are described in the String Services
section of the Python Library Reference.

Array

Arrays are mutable homogeneous sequences. The numpy module allows you to create and operate
on multidimensional arrays. Python determines the type of elements in the array; you do not have
to declare the type when you create the array. For more information about the numpy module, see
numpy.scipy.org.

4–12

Abaqus ID:
Printed on:

THE BASICS OF PYTHON

>>> from numpy import array
>>> myIntegerArray = array([[1,2],[2,3],[3,4]])
>>> myIntegerArray
array([[1, 2],

[2, 3],
[3, 4]])

>>> myRealArray =array([[1.0,2],[2,3],[3,4]])
>>> myRealArray
array([[1., 2.],

[2., 3.],
[3., 4.]])

>>> myRealArray * myIntegerArray
array([[1., 4.],

[4., 9.],
[9., 16.]])

4.5.5 Sequence operations
Python provides a set of tools that allow you to operate on a sequence.

Slicing

Sequences can be divided into smaller sequences. This operation is called slicing. The expression
sequence[m:n] returns a copy of sequence fromm to n−1. The default value form is zero; the default
value for n is the length of the sequence.

>>> myList = [0,1,2,3,4]
>>> myList[1:4]
[1, 2, 3]

>>> myString ='linear load'
>>> myString[7:]
'load'
>>> myString[:6]
'linear'

Repeat a sequence

>>> x=(1,2)
>>> x*2
(1, 2, 1, 2)
>>> s = 'Hoop Stress'
>>> s*2
>>> 'Hoop StressHoop Stress'

4–13

Abaqus ID:
Printed on:

THE BASICS OF PYTHON

Determine the length of a sequence
>>> myString ='linear load'
>>> len(myString)
11
>>> myList = [0,1,2,3,4]
>>> len(myList)
5

Concatenate sequences

>>> a = [0,1]
>>> b = [9,8]
>>> a + b
[0, 1, 9, 8]
>>> test = 'wing34'
>>> fileExtension = '.odb'
>>> test+fileExtension
'wing34.odb'

Range
The range() function generates a list containing a sequence of integers. You can use the
range() function to control iterative loops. The arguments to range are start (the starting
value), end (the ending value plus one), and step (the step between each value). The start and step
arguments are optional; the default start argument is 0, and the default step argument is 1. The
arguments must be integers.

>>> range(2,8)
[2, 3, 4, 5, 6, 7]
>>> range(4)
[0, 1, 2, 3]
>>> range(1,8,2)
[1, 3, 5, 7]

Convert a sequence type
Convert a sequence to a list or a tuple.

>>> myString='noise'
>>> myList = list(myString) #Convert a string to a list.
>>> myList[0] = 'p'
>>> myList
['p', 'o', 'i', 's', 'e']
>>> myTuple = tuple(myString) #Convert a string to a tuple.
>>> print myTuple
('n', 'o', 'i', 's', 'e')

4–14

Abaqus ID:
Printed on:

THE BASICS OF PYTHON

4.5.6 Python None

Python defines a special object called the None object or “Python None” that represents an empty value.
The None object is returned by functions and methods that do not have a return value. The None object
has no value and prints as None. For example

>>> a = [1, 3, 7, 5]
>>> print a.sort()
None
>>> import sys
>>> x = sys.path.append('.')
>>> print x
None

4.5.7 Continuation lines and comments

You can continue a statement on the following line if you break the statement between a set of (), {}, or
[] delimiters. For example, look at the tuple that was used in “Creating a part,” Section 3.1, to assign the
coordinates of the vertices to a variable:

xyCoordsOuter = ((-10, 30), (10, 30), (40, -30),
(30, -30), (20, -10), (-20, -10),
(-30, -30), (-40, -30), (-10, 30))

If a statement breaks at any other place, you must include a “\” character at the end of the line to indicate
that it is continued on the next line. For example,

distance = mdb.models['Model-1'].parts['housing'].\
getDistance(entity1=node1, entity2=node2)

When you are running Python from a local Linux or Windows window, the prompt changes to the “. . .”
characters to indicate that you are on a continuation line.

Comments in a Python script begin with the “#” character and continue to the end of the line.

>>> #Define material constants
>>> modulus = 1e6 #Define Young's modulus

4.5.8 Printing variables using formatted output

Python provides a print function that displays the value of a variable. For example,

4–15

Abaqus ID:
Printed on:

THE BASICS OF PYTHON

>>> freq = 22.0/7.0
>>> x = 7.234
>>> print 'Vibration frequency = ', freq
Vibration frequency = 3.14285714286
>>> print 'Vibration frequency = ', freq, 'Displacement =\
... ', x
Vibration frequency = 3.14285714286 Displacement = 7.234

The string modulus operator % allows you to format your output. The %s operator in the following
example converts the variables to strings.

>>> print 'Vibration frequency = %s Displacement =\
... %s' % (freq, x)
Vibration frequency = 3.14285714286 Displacement = 7.234

The %f operator specifies floating point notation and indicates the total number of characters to print and
the number of decimal places.

>>> print 'Vibration frequency = %6.2f Displacement =\
... %6.2f' % (freq, x)
Vibration frequency = 3.14 Displacement = 7.23

The %E operator specifies scientific notation and indicates the number of decimal places.

>>> print 'Vibration frequency = %.6E Displacement =\
... %.2E' % (freq, x)
Vibration frequency = 3.142857E+00 Displacement = 7.23E+00

The following list includes some additional useful printing operators.

• The + flag indicates that a number should include a sign.
• The \n escape sequence inserts a new line.
• The \t escape sequence inserts a tab character.

For example,

>>> print 'Vibration frequency = %+.6E\nDisplacement =\
... %+.2E' % (freq, x)
Vibration frequency = +3.142857E+00
Displacement = +7.23E+00

4.5.9 Control blocks
Python does not use a special character, such as “}”, to signify the end of a control block such as an
if statement. Instead, Python uses indentation to indicate the end of a control block. You define the

4–16

Abaqus ID:
Printed on:

THE BASICS OF PYTHON

indentation that governs a block. When your script returns to the original indentation, the block ends.
For example,

max = 5
i = 0
while i <= max:

square = i**2
cube = i**3
print i, square, cube
i = i + 1

print 'Loop completed'

When you are using the Python interpreter from the Abaqus/CAE command line interface or if you
are running Python from a local Linux or Windows window, the prompt changes to the “. . .” characters
to indicate that you are in a block controlled by indentation.

if, elif, and else

>>> load = 10
>>> if load > 6.75:
... print 'Reached critical load'
... elif load < 2.75:
... print 'Minimal load'
... else:
... print 'Typical load'

while

>>> load = 10
>>> length = 3
>>> while load < 1E4:
... load = load * length
... print load

Use break to break out of a loop.

>>> while 1:
... x = raw_input(Enter a number or 0 to quit:')
... if x == '0':
... break
... else:
... print x

Use continue to skip the rest of the loop and to go to the next iteration.

4–17

Abaqus ID:
Printed on:

PROGRAMMING TECHNIQUES

>>> load = 10
>>> length = -3
>>> while load < 1E6: #Continue jumps up here
... load = load * length
... if load < 0:
... continue #Do not print if negative
... print load

for

Use a sequence to control the start and the end of for loops. The range() function is an easy
way to create a sequence.

>>> for i in range(5):
... print i
...
0
1
2
3
4

4.6 Programming techniques

The following sections introduce you to some of the techniques you will need to program with Python.
The following topics are covered:

• “Creating functions,” Section 4.6.1
• “Using dictionaries,” Section 4.6.2
• “Reading and writing from files,” Section 4.6.3
• “Error handling,” Section 4.6.4
• “Functions and modules,” Section 4.6.5
• “Writing your own modules,” Section 4.6.6

4.6.1 Creating functions
You can define your own functions in Python. A function is like a subroutine in Fortran. You can pass
arguments into a function, it performs the operation, and it can return one or more values. For example,
the following function returns the distance of a point from the origin. The def statement starts a function
definition.

4–18

Abaqus ID:
Printed on:

PROGRAMMING TECHNIQUES

def distance(x, y):
a = x**2 + y**2
return a ** 0.5

You supply the arguments to a function in parentheses; for example,

>>> distance(4.7, 9.1)
10.2420701033

You can assign the return value to a variable:

>>> d = distance(4.7, 9.1)
>>> print d
10.2420701033

One of the methods provided by Abaqus uses as many as 50 arguments. Some of the arguments
are required by the method; others are optional, and Abaqus provides an initial or default value.
Fortunately, you can call a function or a method without providing every optional argument if you use
Python’s “keyword” arguments. A keyword specifies the argument that you are providing. Keyword
arguments also make your scripts more readable. For example, the following defines a function called
calculateCylinderVolume:

>>> from math import *
>>> def calculateCylinderVolume(radius,height):
... volume = pi * radius**2 * height
... return volume

You can call the function with the following line:

>>> volume = calculateCylinderVolume(3.2,27.5)

Here the arguments are called positional arguments because you are relying on their position in the
function call to determine the variable to which they are assigned in the function—radius followed by
height.

The following is the same statement using keyword arguments:

>>> volume = calculateCylinderVolume(radius=3.2, height=27.5)

Keyword arguments make your code more readable. In addition, if you use keyword arguments, you can
enter the arguments in any order.

>>> volume = calculateCylinderVolume(height=27.5, radius=3.2)

You can define default values for an argument in a function definition. For example, the following
sets the default value of radius to 0.5 and the default value of height to 1.0:

>>> from math import *
>>> def calculateCylinderVolume(radius=0.5,height=1.0):

4–19

Abaqus ID:
Printed on:

PROGRAMMING TECHNIQUES

... volume = pi * radius * radius * height

... return volume

You can now call the function without providing all the arguments. The function assigns the default
value to any missing arguments.

>>> volume = calculateCylinderVolume(height=27.5)

It is good programming practice to use a documentation string that indicates the purpose of a
function and the arguments expected. A documentation string appears at the top of a function and is
delimited by triple quotes """. You can use the __doc__ method to obtain the documentation string
from a function while running the Python interpreter. For example,

>>>def calculateCylinderVolume(radius=0.5,height=1.0):
... """
... Calculates the volume of a cylinder.
...
... Takes two optional arguments, radius (default=0.5)
... and height (default=1.0).
... """
... from math import *
... volume = pi * radius**2 * height
... return volume
...
>>> print calculateCylinderVolume.__doc__

Calculates the volume of a cylinder.

Takes two optional arguments, radius (default=0.5)
and height (default=1.0).

You can retrieve the documentation string for the methods in the Abaqus Scripting Interface. For
example,

>>> mdb.Model.__doc__
'Mdb.Model(name <, description, stefanBoltzmann, absoluteZero>) ->

This method creates a Model object.'

>>> session.Viewport.__doc__
'Session.Viewport(name <, origin, width, height, border, titleBar,

titleStyle, customTitleString>)
-> This method creates a Viewport object with the specified

origin and dimensions.'

4–20

Abaqus ID:
Printed on:

PROGRAMMING TECHNIQUES

The documentation string shows the name of each argument name and whether the argument is required
or optional. The string also shows a brief description of the method.

You can use the sys module to retrieve command line arguments and pass them to a function. For
example, the following script takes two arguments—the X- and Y-coordinates of a point—and calculates
the distance from the point to the origin. The script uses the following modules:

• The sys module to retrieve the command line arguments.
• The math module to calculate the square root.

import sys, math
#~~~
def distance(x, y):

"""
Prints distance from origin to (x, y).

Takes two command line arguments, x and y.
"""

Square the arguments and add them.

a = x**2 + y**2

Return the square root.

return math.sqrt(a)

Retrieve the command line arguments and
convert the strings to floating-point numbers.

x = float(sys.argv[1])
y = float(sys.argv[2])

Call the distance function.

d = distance(x, y)

Print the result.

print 'Distance to origin = ', d

To use this script, do the following:

• Copy the statements into a file called distance.py in your local directory.
• Type the following at the system prompt:

4–21

Abaqus ID:
Printed on:

PROGRAMMING TECHNIQUES

abaqus python distance.py 30 40

Abaqus executes the script and prints the result.

Distance to origin = 50.0

4.6.2 Using dictionaries
Dictionaries are a powerful tool in Python. A dictionary maps a variable to a set of data, much like a real
dictionary maps a word to its definition, its pronunciation, and its synonyms. Dictionaries are similar to
lists in that they are not homogeneous and can contain objects of any type. To access an object in a list,
you provide the integer index that specifies the position of the object in the list. For example,

>>> myList = [6,2,9]
>>> myList[1]
2

In contrast, you access an object in a dictionary through its key, which can be a string, an integer, or any
type of immutable Python object. There is no implicit order to the keys in a dictionary. In most cases
you will assign a string to the dictionary key. The key then becomes a more intuitive way to access the
elements in a dictionary. You use square brackets and the dictionary key to access a particular object.
For example,

>>> myPart = {} #Create an empty dictionary
>>> myPart['size'] = 3.0
>>> myPart['material'] = 'Steel'
>>> myPart['color'] = 'Red'
>>> myPart['number'] = 667

You can add dictionary keys at any time.

>>> myPart['weight'] = 376.0
>>> myPart['cost'] = 10.34

You use the key to access an item in a dictionary.

>>> costOverWeight = myPart['cost'] / myPart['weight']
>>> costOverWeight
0.0275
>>> description = myPart['color'] + myPart['material']
>>> description
'RedSteel'

Dictionaries are not sequences, and you cannot apply sequencemethods such as slicing and concatenating
to dictionaries. Dictionaries have their own methods. The following statement lists the methods of the
dictionary myPart.

4–22

Abaqus ID:
Printed on:

PROGRAMMING TECHNIQUES

>>> myPart.__methods__
['clear', 'copy', 'get', 'has_key', 'items', 'keys',
'update', 'values']

The keys() method returns a list of the dictionary keys.

>>> myPart.keys()
['size', 'weight', 'number', 'material', 'cost', 'color']

The values() method returns a list of the values of each entry in the dictionary.

>>> myPart.values()
[3.0, 376.0, 667, 'Steel', 10.34, 'Red']

The items() method returns a list of tuples. Each tuple contains the key and its value.

>>> myPart.items()
[('size', 3.0), ('number', 667), ('material', 'Steel'),
('color', 'Red'), ('weight', 376.0), ('cost', 10.34),]

You use the has_key() method to see if a key exists. A return value of 1 indicates the key exists in
the dictionary. A return value of 0 indicates the key does not exist.

>>> myPart.has_key('color')
1

Python’s del statement allows you to delete a variable.

>>> del myPart

You can also use del to delete an item from a dictionary.

>>> del myPart['color']
>>> myPart.has_key('color')
0

You can use the keys(), values(), or items() methods to loop through a dictionary. In the
following example, items() returns two values; the first is assigned to property, and the second is
assigned to setting.

>>> for property, setting in myPart.items():
... print property, setting
...
size 3.0
weight 376.0
number 667
material Steel
cost 10.34

4–23

Abaqus ID:
Printed on:

PROGRAMMING TECHNIQUES

4.6.3 Reading and writing from files

Many of the file commands are built-in Python commands. You do not have to import a module to use
file commands. You use the open() function to create a file.

>>> myInputFile = open('crash_test/fender.txt','r')
>>> myOutputFile = open('peak_deflection.txt','w+')

The first line opens an existing file in the crash_test directory called fender.txt. The file is
opened in read-only mode; myInputFile is a variable that refers to a file object. The second line
creates and opens a new file object in the local directory called peak_deflection.txt. This file is
opened in read and write mode.

Use the “__methods__” technique that we saw earlier to see the methods of a file object.

>>> myOutputFile = open('peak_deflection.txt','w')
>>> myOutputFile.__methods__
['close', 'fileno', 'flush', 'isatty', 'read',
'readinto', 'readline', 'readlines', 'seek', 'tell',
'truncate', 'write', 'writelines']

The readline() method reads a single line from a file into a string, including the new line character
that terminates the string. The readlines() method reads all the lines in a file into a list. The
write() function writes a string to a file. Look at the standard Python documentation on the official
Python web site (www.python.org) for a description of functions that operate on files. File objects are
described in the Built-in Types section of the Python Library Reference.

The following example reads each line of a text file and changes the line to uppercase characters:

Read-only is the default access mode

>>> inputFile = open('foam.txt')

You must declare write access

>>> outputFile = open('upper.txt','w')
>>> lines = inputFile.readlines()
>>> for line in lines:
... newLine = line.upper()
... outputFile.write(newLine)
...
>>> inputFile.close()
>>> outputFile.close()

4–24

Abaqus ID:
Printed on:

PROGRAMMING TECHNIQUES

The first line opens the input file; you don’t need the ’r’ because read-only is the default access mode.
The next line opens a new file to which you will write. You read the lines in the input file into a list.
Finally, you enter a loop that converts each line to uppercase characters and writes the result to the output
file. The final two lines close the files.

4.6.4 Error handling
When a script encounters unusual circumstances, Python allows you tomodify the flow of control through
the script and to take the necessary action. The action of signaling a problem during execution is called
raising or throwing an exception. Recognizing the problem is called catching an exception. Taking
appropriate action is called exception handling.

Python provides exception handling through the try and except commands. For example, the
following statement attempts to open an existing file for reading:

>>> outputFile = open('foam.txt')

If the file does not exist, the statement fails, and Python displays the following error message:

>>> outputFile = open('foam.txt')
Traceback (innermost last):

File "<stdin>", line 1, in ?
IOError: (2, 'No such file or directory')

If you use exception handling, you can catch the error, display a helpful message, and take the appropriate
action. For example, a revised version of the code attempts to open the same file within a try statement.
If an IOError error is encountered, the except statement catches the IOError exception and assigns
the exception’s value to the variable error.

>>> try:
... outputFile = open('foam.txt')
... except IOError,error:
... print 'Exception trapped: ', error
...
Exception trapped: (2, 'No such file or directory')

You can raise your own exceptions by providing the error type and the error message to the raise
statement. The following example script raises an exception and displays a message if the function
myFunction encounters a problem.

def myFunction(x,y):

if y == 0:
raise ValueError, 'y argument cannot be zero'

else:
return x/y

4–25

Abaqus ID:
Printed on:

PROGRAMMING TECHNIQUES

try:
print myFunction(temperature, velocity)

except ValueError, error:
print error

Exception handling is discussed in more detail in “Error handling in the Abaqus Scripting Interface,”
Section 5.5.

4.6.5 Functions and modules
When you start Python from a local window or from Abaqus/CAE, the Python interpreter is aware of a
limited set of built-in functions. For example, try entering the following at the Python prompt:

>>> myName = 'Einstein'
>>> len(myName)

Python returns the number 8, indicating the length of the string myName. The len() function is a
built-in function and is always available when you are using Python. To see a list of the built-in functions
provided by Python, type dir(__builtins__) at the Python prompt.

Note: dir(__builtins__) is typed as dir(“underscore underscore”builtins“underscore
underscore”). You have seen this “underscore underscore” notation already in “Sequences,”
Section 4.5.4.

In addition, you can look at the standard Python documentation on the official Python web site
(www.python.org) for a list of built-in functions. Built-in functions are described in the Built-in
Functions section of the Python Library Reference.

Many functions, however, are not built-in; for example, most of the math functions, such as sin()
and cos(), are not available when you start Python. Functions that are not built-in are defined in
modules. Modules are a way of grouping functionality and are similar to a Fortran library of subroutines.
For example, the following code could be the opening lines of a Python script. The code imports the
Python module sys and uses the argv member of sys to print the command line arguments:

import sys
for argument in sys.argv:

print argument

You must first import the module to make its functions, names, and functionality available to the
Python interpreter. Try the following:

>>> from math import *
>>> x = pi/4.0
>>> sin(x)

4–26

Abaqus ID:
Printed on:

PROGRAMMING TECHNIQUES

0.707106781187

The first line imports all of the names from the math module. The second line uses pi, a float number
defined in the math module. The third line refers to a sin() function. Python can use the sin()
function because you imported it from the math module.

To import only the sin() function, you could have typed

>>> from math import sin

You need to import a module only once during a session. Once a module is imported, its functions,
methods, and attributes are always available to you. You cannot “unload” a module after you import it.

To see a list of all the functions that come with the math module, look at the Miscellaneous
Services section of the Python Library Reference. You can download public-domain
modules, and you can create your own modules.

Python provides a second approach to importing modules. For example,

>>> import math
>>> x = 22.0/(7.0 * 4.0)
>>> math.sin(x)
0.707330278085

The “import” approach shown above imports the module as a unit, and you must qualify the name of an
object from the module. To access a function from the math module in our example, you must prepend
the function with math.; the math. statement is said to “qualify” the sin() function.

What is the difference between the two approaches to importing modules? If two modules contain
an object with the same name, Python cannot distinguish between the objects if you use the “from
modulename import *” approach. If two objects have the same name, Python uses the object most
recently imported. However, if you use the “import modulename” approach, modulename qualifies the
name of the object and makes it unique.

4.6.6 Writing your own modules
You can create your own module containing a set of Python functions. You can import this module and
make use of its functions. The name of the module to import is the same as the name of the file containing
the functions without the .py file suffix.

For example, you can create a module called myUtilities by copying a modified version of the
function that calculates the distance from a point to the origin into a file called myUtilities.py.

""" myUtilities - a module of mathematical functions"""

import math
#~~~
def distance(x, y):

"""

4–27

Abaqus ID:
Printed on:

PROGRAMMING TECHNIQUES

Prints distance from origin to (x, y).

Takes two arguments, x and y.
"""

Square the arguments and add them.

a = x**2 + y**2

Return the square root.

return math.sqrt(a)

You must import the module to make use of the functions and constants that it contains.

import myUtilities

distance = myUtilities.distance(30, 50)

You can use the __doc__ method to obtain the documentation string from a module. For example,

myUtilities.__doc__
' myUtilities - a module of mathematical functions'

A tool for finding bugs in your modules is provided with Abaqus. The tool is called pychecker.
When you import a module, pychecker prints warnings for any problems it finds with the Python
source code. For example,

>>> from pychecker import checker
>>> import myUtilities
d:\users\smith\myUtilities.py:3: Imported module (sys) not used
d:\users\smith\myUtilities.py:14: Local variable (a) not used
d:\users\smith\myUtilities.py:18: No global (b) found

For more information about pychecker, see the official Python web site (www.python.org)
If you import a module during an interactive session using the command line interface and then

make changes to the module, Python will not recognize your changes until you reload the module; for
example:

import myModule
maxStress = myModule.calculateStress(odb)

Edit myModule.py and modify the calculateStress method.

reload(myModule)

4–28

Abaqus ID:
Printed on:

FURTHER READING

maxStress = myModule.calculateStress(odb)

4.7 Further reading

This chapter has introduced only the basics of the Python programming language. You are encouraged
to look at the standard Python documentation on the official Python web site (www.python.org) for more
information. In addition, you may find it beneficial to work through the online tutorial on the Python web
site. A Python reference book will go into more details on object-oriented programming techniques; see
“Python resources,” Section 4.2, for a list of Python books.

There are many resources available from the Python community. You should look at the official
Python web site (www.python.org) to see the various Python packages that are available publicly.

4–29

Abaqus ID:
Printed on:

EXECUTING SCRIPTS

5. Using Python and the Abaqus Scripting Interface

This section of the guide explains how Python and the Abaqus Scripting Interface combine to provide
a powerful interface to Abaqus/CAE. The Abaqus Scripting Interface is an extension of the Python
language and uses the syntax required by Python. Techniques for combining Python statements and
Abaqus Scripting Interface commands are introduced, and numerous examples are provided. The syntax
of an Abaqus command is explained along with details of how you use the commands to interact with
Abaqus/CAE. This section is intended as a programmer’s guide to using the Abaqus Scripting Interface;
the Abaqus Scripting Reference Guide describes the details of each command.

The following topics are covered:

• “Executing scripts,” Section 5.1
• “Abaqus Scripting Interface documentation style,” Section 5.2
• “Abaqus Scripting Interface data types,” Section 5.3
• “Object-oriented programming and the Abaqus Scripting Interface,” Section 5.4
• “Error handling in the Abaqus Scripting Interface,” Section 5.5
• “Extending the Abaqus Scripting Interface,” Section 5.6

5.1 Executing scripts

You have seen how to execute Python statements from the stand-alone Python interpreter. If your script
does not access the functionality of Abaqus/CAE, you can run the script by typing abaqus python
scriptname.py at the system prompt. Abaqus will run the script through the Python interpreter and
return you to the system prompt.

If your script accesses the functionality of any of the Abaqus/CAE modules, the statements must
be interpreted by the Abaqus/CAE kernel; you cannot run the script from the Python interpreter invoked
from the system prompt. You must execute the script in Abaqus/CAE by selecting File→Run Script
from themain menu bar and selecting the file to execute. In addition, the script must contain the following
statements:

from abaqus import *
from abaqusConstants import *

If your script accesses and manipulates data in an output database, you can execute the script using
either of the methods already described:

• Type abaqus python scriptname .py at the system prompt. The script must contain the
following statement:

from odbAccess import *

5–1

Abaqus ID:
Printed on:

Abaqus SCRIPTING INTERFACE DOCUMENTATION STYLE

• Select File→Run Script from the Abaqus/CAE main menu bar, and select the file to execute. The
script must contain the following statement:

from visualization import *

When you run a script in Abaqus/CAE from the CLI, as part of a macro, or from the File→Run
Script menu option, Abaqus/CAE displays a stop button that you can use to stop a script that has been
running for a predefined duration. If you want to display this button for scripts run using other methods,
execute the showStopButtonInGui command from the abaqus module before you run the script.
The command is not issued automatically when a script is run from the user interface; for example, as
part of a plug-in.

5.2 Abaqus Scripting Interface documentation style

This section describes the style that is used to describe a command in the Abaqus Scripting Reference
Guide. You may want to refer to the Abaqus Scripting Reference Guide while you read this section and
compare the style of a documented command with the descriptions provided here. The following topics
are covered:

• “How the commands are ordered,” Section 5.2.1
• “Access,” Section 5.2.2
• “Path,” Section 5.2.3
• “Arguments,” Section 5.2.4
• “Return value,” Section 5.2.5

5.2.1 How the commands are ordered
The following list describes the order in which commands are documented in the Abaqus Scripting
Reference Guide:

• Chapters are grouped alphabetically by functionality. In general, the functionality corresponds
to the modules and toolsets that are found in Abaqus/CAE; for example, Chapter 3, “Amplitude
commands,” of the Abaqus Scripting Reference Guide; Chapter 4, “Animation commands,” of the
Abaqus Scripting Reference Guide; and Chapter 6, “Assembly commands,” of the Abaqus Scripting
Reference Guide.

• Within each chapter the primary objects appear first and are followed by other objects in alphabetical
order. For example, in Chapter 31, “Mesh commands,” of the Abaqus Scripting Reference Guide,
the objects are listed in the following order:

– Assembly

– Part

5–2

Abaqus ID:
Printed on:

Abaqus SCRIPTING INTERFACE DOCUMENTATION STYLE

– ElemType

– MeshEdge

– MeshElement

– MeshFace

– MeshNode

– MeshStats

• Within each object description, the commands are listed in the following order:
– Constructors (in alphabetical order)

– Methods (in alphabetical order)

– Members

• Some methods are not associated with an object and appear at the end of a chapter; for example,
the evaluateMaterial() method appears at the end of Chapter 29, “Material commands,” of
the Abaqus Scripting Reference Guide.

5.2.2 Access
The description of each object in the Abaqus Scripting Reference Guide begins with a section that
describes how you access an instance of the object. The import statements are provided for completeness.
Abaqus/CAE imports all modules when you start a session, and you do not need to include the import
module name statement in your scripts. However, you must import the Abaqus Scripting Interface
Symbolic Constants with the following statement:

from abaqusConstants import *

These should be the first statement in all your Abaqus Scripting Interface scripts.
The following is the access description for the Material object:

import material
mdb.models[name].materials[name]

The first line of the access description indicates the module that Abaqus/CAE imported to make this
object, and its methods and members, available to your script.

The access description also specifies where instances of the object are located in the data model.
In the previous example the second line indicates how your script can access Material objects from a
particular model. You must qualify a material object, command, or member with the variable mdb, as
described in “Functions and modules,” Section 4.6.5. For example,

mdb.models[crash].Material[steel]
mdb.models[crash].materials[steel].Elastic(

table=((30000000.0, 0.3),))
elasticityType = mdb.models[crash].materials[steel].elastic.type

5–3

Abaqus ID:
Printed on:

Abaqus SCRIPTING INTERFACE DOCUMENTATION STYLE

Similarly, if you are reading from an output database, the following is the access description for the
HistoryRegion object:

import odbAccess
session.odbs[name].steps[name].historyRegions[name]

The first line indicates that Abaqus/CAE imported the odbAccess module to make the Odb objects,
methods, and members available to your Abaqus Scripting Interface script. The second line indicates
how your script can access HistoryRegion objects from a particular step.

The Access description for the FieldOutput object is

session.odbs[name].steps[name].frames[i].fieldOutputs[name]

The following statements show how you use the object described by this Access description:

sideLoadStep = session.odbs['Forming loads'].steps['Side load']
lastFrame = sideLoadStep.frames[-1]
stressData = lastFrame.fieldOutputs['S']
integrationPointData = stressData.getSubset(

position=INTEGRATION_POINT)
invariantsData = stressData.validInvariants

• The next to last line shows the getSubset method of the FieldOutput object.
• The last line shows the validInvariants member of the FieldOutput object.

5.2.3 Path
A method that creates an object is called a “constructor.” The Abaqus Scripting Interface uses the
convention that constructors begin with an uppercase character. In contrast, methods that operate on an
object begin with a lowercase character. The description of each constructor in the Abaqus Scripting
Reference Guide includes a path to the command. For example, the following describes the path to the
Viewport constructor:

session.Viewport

Some constructors include more than one path. For example, you can create a datum that is associated
with either a Part object or the RootAssembly object, and each path is listed.

mdb.models[name].parts[name].DatumAxisByCylFace
mdb.models[name].rootAssembly.DatumAxisByCylFace

The path is not listed if the method is not a constructor.
If you are using the Abaqus Scripting Interface to read data from an output database, the objects exist

when you open the output database, and you do not have to use constructors to create them. However, if

5–4

Abaqus ID:
Printed on:

Abaqus SCRIPTING INTERFACE DOCUMENTATION STYLE

you are creating or writing to an output database, you may need to use constructors to create new objects,
such as part instances and steps. The documentation describes the path to the constructors that create
objects in an output database.

For example, the Path description for the FieldOutput constructor is

session.odbs[name].steps[name].frames[i].FieldOutput

The following statement creates a FieldOutput object:

myFieldOutput = session.odbs[name].steps['Side
load'].frames[-1].\

FieldOutput(name='S', description='stress',
type=TENSOR_3D_FULL)

5.2.4 Arguments
The ellipsis (...) in the command description indicates that the command takes one or more
arguments. For example, the Viewport constructor takes arguments.

Viewport(...)

In contrast, the makeCurrent method takes no arguments.

makeCurrent()

Some arguments of a command are required, and some arguments are optional. In the Abaqus
Scripting Reference Guide the required arguments are listed first, followed by the optional arguments.
If the argument is optional, the default value is provided. The default value is the value of an optional
argument when you call a method and omit the argument.

The setValues method is a special case. All of the arguments to the setValues method are
optional, but any argument that you omit retains its current value; Abaqus does not assign a default value
to the argument.

Some objects have no constructors; Abaqus creates the objects for you. For such objects the
documentation describes the “initial value” of an optional argument. The initial value given for the
argument is the initial value assigned to the corresponding member when Abaqus creates the object.
For example, the defaultViewportAnnotationOptions object has no constructor; Abaqus creates the
defaultViewportAnnotationOptions object when you start a session. When you create a new viewport,
the settings are copied from the current viewport.

You can use the setValues method to modify the value of a member; for example, to modify
the value of the triad member of the defaultViewportAnnotationsOptions object. When you call
session.defaultViewportAnnotationOptions.setValues(triad=OFF), the value
of the triad member is set to off. The other member values remain unchanged; this behavior is called
“as is” behavior because the values remain “as is.” The setValuesInStep method displays similar
“as is” behavior.

5–5

Abaqus ID:
Printed on:

Abaqus SCRIPTING INTERFACE DOCUMENTATION STYLE

Keyword and positional arguments are described in “Creating functions,” Section 4.6.1. We
recommend that you use keyword arguments since they can be supplied in any order and they make
your scripts easier to read and debug; for example,

newViewport = session.Viewport(name='myViewport',
origin=(10, 10), width=100, height=50)

If you choose not to use keywords, the arguments must be provided in the order in which they are
documented.

newViewport = session.Viewport('myViewport',
(10, 10), 100, 50)

You can use a combination of keyword and positional arguments. Keyword arguments can be supplied
after positional arguments; however, positional arguments cannot be entered after keyword arguments.
For example, you can use the following statement:

newViewport = session.Viewport('myViewport',
(10, 10), width=100, height=50)

However, you cannot use the following statement:

newViewport = session.Viewport(name='myViewport',
(10, 10), 100, 50)

You will find it easier to use keyword arguments so that you do not have to concern yourself with the
positional requirements.

5.2.5 Return value
All commands return a value. Many commands return the None object described in “Python None,”
Section 4.5.6. Constructors (methods that create an object) always return the object being created. The
return value of a command can be assigned to a Python variable. For example, in the following statement
the Viewport constructor returns a Viewport object, and the variable newViewport refers to this new
object.

newViewport = session.Viewport(name='myViewport',
origin=(10, 10), width=100, height=50)

You can use the object returned by a command in subsequent statements. For example, the titlebar
member of a Viewport object is a Boolean specifying whether the viewport title bar is displayed and can
have a value of either ON or OFF. The following statement tests the titlebarmember of the new viewport
created by the previous statement:

if newViewport.titleBar:
print 'The title bar will be displayed.'

5–6

Abaqus ID:
Printed on:

Abaqus SCRIPTING INTERFACE DATA TYPES

5.3 Abaqus Scripting Interface data types

The standard Python data types described in “Python data types,” Section 4.5.2, include integers, floats,
strings, and sequences. The Abaqus Scripting Interface adds over 500 additional data types. The
following sections describe the most common Abaqus Scripting Interface data types:

• “SymbolicConstants,” Section 5.3.1
• “Booleans,” Section 5.3.2
• “Repositories,” Section 5.3.3

5.3.1 SymbolicConstants
Some arguments require that you provide a SymbolicConstant. SymbolicConstants are defined by the
Abaqus Scripting Interface and are written in all capital letters. If your script uses a SymbolicConstant
defined by the Abaqus Scripting Interface, you must import the SymbolicConstant with the following
statement before you refer to it:

from abaqusConstants import *

When an argument to a command is a SymbolicConstant, the description in the Abaqus Scripting
Reference Guide lists all its possible values. For example, when you are printing an image, the image
can be rendered in one of the following formats: BLACK_AND_WHITE, GREYSCALE, or COLOR.

Similarly, a data member can be a SymbolicConstant. For example, the type member
of the Elastic object can be one of the following SymbolicConstants: ISOTROPIC,
ORTHOTROPIC, ANISOTROPIC, ENGINEERING_CONSTANTS, LAMINA, TRACTION, or
COUPLED_TRACTION.

If the SymbolicConstants provided by the Abaqus Scripting Interface do not meet your needs,
you can create your own SymbolicConstants using the SymbolicConstant constructor. For more
information, see “SymbolicConstant object,” Section 53.1 of the Abaqus Scripting Reference Guide.

5.3.2 Booleans
Python defines two Boolean values, True and False. The type of a Python Boolean is <type ’bool’>.

myPythonBoolean = True
type(myPythonBoolean)
<type 'bool'>

In addition, the Abaqus Scripting Interface defines a Boolean object, derived from the SymbolicConstant
object, which can take the values ON and OFF. For example, noPartsInputFile is a member of a Model

5–7

Abaqus ID:
Printed on:

Abaqus SCRIPTING INTERFACE DATA TYPES

object that indicates whether the input file will be written with parts and assemblies. The type of the
noPartsInputFile member is <type ’AbaqusBoolean’>.

Abaqus recommends that you use the Python Boolean in your scripts and that you convert existing
scripts to use the Python Boolean.

The value of a Boolean argument can appear to be ambiguous; for example,

newModel = mdb.ModelFromInputFile(name='beamTutorial',
inputFileName='Deform')

newModel.setValues(noPartsInputFile=False)
print newModel.noPartsInputFile
OFF

Because of this ambiguity, you should test a Boolean for a positive or negative value, as opposed to
comparing it to a specific value like 0, OFF, or False. For example, the following statements show how
you should test the value of a Boolean member:

if (newModel.noPartsInputFile):
print 'Input file will be written without parts \

and assemblies. '
else:

print 'Input file will be written with parts \
and assemblies.'

5.3.3 Repositories

Repositories are containers that store a particular type of object; for example, the steps repository
contains all the steps defined in the model. A repository maps to a set of information and is similar to
a Python dictionary; for more information, see “Using dictionaries,” Section 4.6.2. However, only a
constructor can add an object to a repository. In addition, all the objects in a repository are of the same
type. For example, the following repository contains all the models in the model database:

mdb.models

In turn, the following repository contains all the parts in the model Model-1:

mdb.models['Model-1'].parts

As with dictionaries, you can refer to an object in a repository using its key. The key is typically
the name you provided in the constructor command when the object was created. For example, the
Viewport constructor creates a new Viewport object in the viewports repository.

session.Viewport(name='Side view',
origin = (10,10), width=50, height=50)

5–8

Abaqus ID:
Printed on:

OBJECT-ORIENTED PROGRAMMING AND THE Abaqus SCRIPTING INTERFACE

The key to this new Viewport object in the viewports repository is Side view. You use this key
to access this particular Viewport object. For example,

session.viewports['Side view'].viewportAnnotationOptions.\
setValues(legend=OFF, title=OFF)

You can make your scripts more readable by assigning a variable to an object in a repository. For
example, you could rewrite the previous statement after assigning the Viewport object to the variable
myViewport:

myViewport = session.viewports['Side view']
myViewport.viewportAnnotationOptions.setValues(

legend=OFF, title=OFF)

In general, if the user can create the object, its repository key is a string. In some cases Abaqus/CAE
creates an object, and the key can be a string, an integer, or a SymbolicConstant.

As with dictionaries, you can use the keys() method to access the repository keys.

>>> session.Viewport(name='Side view')
>>> session.Viewport(name='Top view')
>>> session.Viewport(name='Front view')
>>> for key in session.viewports.keys():

...
print key

Front view
Top view
Side view

You can use the keys()[i] method to access an individual key; however, most repositories are not
ordered, and this is not recommended.

You can use the changeKey()method to change the name of a key in a repository. For example,

myPart = mdb.models['Model-1'].Part(name='housing',
dimensionality=THREE_D, type=DEFORMABLE_BODY)

mdb.models['Model-1'].parts.changeKey(fromName='housing',
toName='form')

5.4 Object-oriented programming and the Abaqus Scripting Interface

You should now be familiar with some of the concepts behind object-oriented programming, such as
objects, constructors, methods, and members. This section describes how object-oriented programming

5–9

Abaqus ID:
Printed on:

OBJECT-ORIENTED PROGRAMMING AND THE Abaqus SCRIPTING INTERFACE

relates to the Abaqus Scripting Interface and summarizes some of the terminology. The following topics
are covered:

• “The Abaqus Scripting Interface and methods,” Section 5.4.1
• “The Abaqus Scripting Interface and members,” Section 5.4.2
• “Object-oriented programming and the Abaqus Scripting Interface—a summary,” Section 5.4.3

5.4.1 The Abaqus Scripting Interface and methods
Most Abaqus Scripting Interface commands are methods. For example,

session.viewports['Viewport-1'].setValues(width=50)

In this example setValues() is a method of the Viewport object.
A constructor is a method that creates an object. By convention, all constructor names and all

objects start with an uppercase character in the Abaqus Scripting Interface. The name of a constructor is
usually the same as the name of the type of object it creates. In the following example Viewport is a
constructor that creates a Viewport object called myViewport:

myViewport = session.Viewport(name='newViewport',
width=100,height=100)

Some objects do not have a constructor. The object is created as a member of another object when
the first object is created. For example, Abaqus creates the vertices of a part when you create a part’s
geometry, and the coordinates of the vertices are stored as Vertex objects. The Vertex objects are members
of the Part object. The following statement prints the coordinates of the first vertex of a part:

print
mdb.models['Model-1'].parts['Part-1'].vertices[0].pointOn

The standard Python statement object.__methods__ lists all the methods of an object. For
example, the following statement lists all the methods of a Viewport object:

session.viewports['myViewport'].__methods__

See the Abaqus Scripting Reference Guide for a description of each method of the Abaqus Scripting
Interface objects.

5.4.2 The Abaqus Scripting Interface and members
An object has members as well as methods. A member can be thought of as a property of an object. For
example, width is a member of the Viewport object. The following statements show how you access a
member of an object:

>>> myWidth = session.viewports['myViewport'].width
>>> print 'Viewport width =', myWidth Viewport width = 100.0

5–10

Abaqus ID:
Printed on:

OBJECT-ORIENTED PROGRAMMING AND THE Abaqus SCRIPTING INTERFACE

The standard Python statement object.__members__ lists all the members of an object. For example,
the following statement lists all the members of a Viewport object:

session.viewports['myViewport'].__members__

The values of members are specific to each instance of the object. For example, the value of the width
member of a Viewport object is specific to each viewport.

Members of an Abaqus object are read-only; consequently, you cannot change their value with a
simple assignment statement. You use the setValues()method to change the value of a member. For
example, the setValues() statement in the following script changes the thickness of a shell section:

>>> import section
>>> shellSection = mdb.models['Model-1'].HomogeneousShellSection(

name='Steel Shell', thickness=1.0, material='Steel')
>>> print 'Original shell section thickness = ' \

, shellSection.thickness
Original shell section thickness = 1.0
>>> shellSection.setValues(thickness=2.0)
>>> print 'Final shell section thickness = ' \

, shellSection.thickness
Final shell section thickness = 2.0

You cannot use assignment to change the value of the Shell object.

>>> myShell.thickness = 2.0
TypeError: readonly Attribute

The following statements illustrate the use of constructors, methods, and members:

>>> # Create a Section object
>>> mySection = mdb.models['Model-1'].HomogeneousSolidSection(

name='solidSteel', material='Steel', thickness=1.0)
>>> # Display the type of the object
>>> print 'Section type = ', type(mySection)
Section type = <type 'HomogeneousSolidSection'>
>>> # List the members of the object
>>> print 'Members of the section are:' , mySection.__members__
Members of the section are: ['category', 'dimension',
'layout', 'material', 'name',
'thickness']
>>> # List the methods of the object
>>> print 'Methods of the section are: ', mySection.__methods__
Methods of the section are: ['setValues']
>>> # Print the value of each member in a nice format
>>> for member in mySection.__members__:

5–11

Abaqus ID:
Printed on:

OBJECT-ORIENTED PROGRAMMING AND THE Abaqus SCRIPTING INTERFACE

...
print 'mySection.%s = %s' % (member,

getattr(mySection, member))
mySection.category = SOLID
mySection.dimension = THREE_DIM
mySection.layout = HOMOGENEOUS
mySection.material = Steel
mySection.name = solidSteel
mySection.thickness = 1.0

You use the Access description provided with each object in the Abaqus Scripting Reference
Guide to determine how you access the object. You append a method or member to this description
when you are writing a script. Similarly, you use the Path description provided with each constructor
in the Abaqus Scripting Reference Guide to determine the path to the constructor.

5.4.3 Object-oriented programming and the Abaqus Scripting
Interface—a summary

After you create an object, you then use methods of the objects to enter or to modify the data associated
with the object. For example, you use the addNodes and addElements methods of the Part object
to add nodes and elements, respectively. Similarly, you use the addData method of the FieldOutput
object to add field output data.

The following list summarizes some of the concepts behind object-oriented programming and how
they relate to the Abaqus Scripting Interface:

• An object encapsulates some data and functions that are used to manipulate those data.
• The data encapsulated by an object are called the members of the object.
• The functions that manipulate the data are called methods.
• The Abaqus Scripting Interface uses the convention that the name of a type of object begins with
an uppercase character; for example, a Viewport object.

• A method that creates an object is called a constructor. The Abaqus Scripting Interface uses the
convention that constructors begin with an uppercase character. In contrast, methods that operate
on an object begin with a lowercase character.

• After you create an object, you then use methods of the object to enter or to modify the data
associated with the object. For example, if you are creating an output database, you first create
an Odb object. You then use the addNodes and addElements methods of the Part object to
add nodes and elements, respectively. Similarly, you use the addData method of the FieldOutput
object to add field output data to the output database.

• You use the Access description provided with each object in the Abaqus Scripting Reference
Guide to determine how you access the object. You append a method or a member to this description
when you are writing a script.

5–12

Abaqus ID:
Printed on:

ERROR HANDLING IN THE Abaqus SCRIPTING INTERFACE

• You use the Path description provided with each constructor in the Abaqus Scripting Reference
Guide to determine the path to the constructor.

• You use the setValues() method to modify the members of an Abaqus Scripting Interface
object.

session.viewports['Side view'].setValues(origin=(20,20))

5.5 Error handling in the Abaqus Scripting Interface

The basics of Python’s exception handling are described in “Error handling,” Section 4.6.4; and the
same techniques apply to the Abaqus Scripting Interface. If certain circumstances arise while a script
is running, Python allows you to take the necessary action and still allows the script to continue.
Alternatively, when Abaqus/CAE issues (or “throws”) an exception and the exception is not handled
by the script, Abaqus/CAE displays the exception message in the message area and the script stops
executing.

The following topics are covered:

• “Standard Python exceptions,” Section 5.5.1
• “Standard Abaqus Scripting Interface exceptions,” Section 5.5.2
• “Additional Abaqus Scripting Interface exceptions,” Section 5.5.3
• “Exception handling,” Section 5.5.4

5.5.1 Standard Python exceptions

Python exceptions arise from either system-related problems, such as a disk or network error, or from
programming errors, such as numeric overflow or reference to an index that does not exist. Standard
Python exceptions are not described in this guide and are not listed as possible exceptions in the Abaqus
Scripting Reference Guide.

Look at the standard Python documentation on the official Python web site (www.python.org) for a
list of standard Python exceptions. Standard exceptions are described in the Built-in Exceptions
section of the Python Library Reference.

5.5.2 Standard Abaqus Scripting Interface exceptions

Standard Abaqus Scripting Interface exceptions arise from errors in a script that relate to Abaqus/CAE.
The standard Abaqus Scripting Interface exceptions that can be raised by a method are listed with each
command in the Abaqus Scripting Reference Guide. The standard Abaqus Scripting Interface exception
types are listed below:

5–13

Abaqus ID:
Printed on:

ERROR HANDLING IN THE Abaqus SCRIPTING INTERFACE

InvalidNameError

You specified an invalid name. Abaqus/CAE enforces a naming convention for objects that you
create. Names must adhere to the following rules:

• The name can have up to 38 characters.
• The name can include spaces and most punctuation marks and special characters; however,
only 7-bit ASCII characters are supported.

WARNING: While Python allows most punctuation marks and special characters, some of the
strings you provide will be used in an Abaqus input file; therefore, you cannot use the following
characters: $&*~!()[]{}|;’‘",.?/\ when you are naming an object, such as a part, a model or
a job.

• The name must not begin with a number.
• The name must not begin or end with an underscore or a space.
• The name must not contain a period or a double quote.

RangeError

A numeric value is out of range.

AbaqusError

Context-dependent message.

AbaqusException

Context-dependent message.

Note: The command descriptions in the Abaqus Scripting Reference Guide list the type of standard
Abaqus Scripting Interface exceptions that can occur; however, the exception messages are not included
with the command description.

5.5.3 Additional Abaqus Scripting Interface exceptions

Each command in the Abaqus Scripting Reference Guide lists the standard Abaqus Scripting Interface
exceptions that can be raised by a command. In addition, if the exception is not a standard Python or
Abaqus Scripting Interface exception, the description lists the following:

• A brief description of the problem.
• The exception type.
• The exception message.

For example, Figure 5–1 shows the layout of a typical exception description in the online documentation.

5–14

Abaqus ID:
Printed on:

ERROR HANDLING IN THE Abaqus SCRIPTING INTERFACE

Exception type

Exception message

Standard Abaqus
Scripting Interface exception

Additional
exception

Figure 5–1 The layout of a typical exception description in the online documentation.

You use the exception type in your error handling routines.

5.5.4 Exception handling

The Python exception handling techniques described in “Error handling,” Section 4.6.4, apply to the
Abaqus Scripting Interface. You should use the command description in the Abaqus Scripting Reference
Guide to decide for which exception types you need to account. For example, the following Abaqus
Scripting Interface script attempts to create a viewport and prints a message if the width or height are
too small:

try:
session.Viewport(name='tiny',width=1, height=1)

except RangeError, message:
print 'Viewport too small:', message

print 'Script continues running and prints this line'

The resulting output is

Viewport too small: width must be a Float >= 30
Script continues running and prints this line

The exception has been handled, and the script continues.

5–15

Abaqus ID:
Printed on:

EXTENDING THE Abaqus SCRIPTING INTERFACE

5.6 Extending the Abaqus Scripting Interface

You can extend the functionality of the Abaqus Scripting Interface by writing your own modules that
contain classes and functions to accomplish tasks that are not directly available in Abaqus. For example,
you can write a function to print the names of all materials that have a density specified, or you can write
a function that creates a contour plot using a custom set of contour plot options. Creating functions and
modules in Python is described in “Creating functions,” Section 4.6.1, and “Functions and modules,”
Section 4.6.5.

This section describes how you can extend the functionality of the Abaqus Scripting Interface. The
following topics are covered:

• “Storing custom data in the model database or in other objects,” Section 5.6.1
• “Interaction with the GUI,” Section 5.6.2
• “CommandRegister class,” Section 5.6.3
• “Repositories,” Section 5.6.4
• “Repository methods,” Section 5.6.5
• “RepositorySupport,” Section 5.6.6
• “Registered dictionaries,” Section 5.6.7
• “Registered lists,” Section 5.6.8
• “Registered tuples,” Section 5.6.9
• “Session data,” Section 5.6.10
• “Saving application data in a model database,” Section 5.6.11
• “Checking a model database when it is opened,” Section 5.6.12

5.6.1 Storing custom data in the model database or in other objects
If you extend the kernel functionality by writing your own classes and functions, you may want to store
data required by those classes or functions in the Abaqus/CAE model database so the data are available
the next time you open the database. To store custom kernel data in the Abaqus/CAE model database,
you must make use of the customKernel module. The customKernel module augments the mdb
object with a member called customData. When you save a model database, Abaqus/CAE also saves
any data created below the customData object.

For example,

import customKernel
mdb = Mdb()
mdb.customData.myString = 'The width is '
mdb.customData.myNumber = 58

5–16

Abaqus ID:
Printed on:

EXTENDING THE Abaqus SCRIPTING INTERFACE

mdb.saveAs('custom-test.cae')
mdb.close()

If you start a new session and open the model database, custom-test.cae, you can refer to the
variables that you saved. For example,

>>> import customKernel
mdb = openMdb('custom-test.cae')
>>> print mdb.customData.myString, mdb.customData.myNumber
The width is 58

You can store almost any type of Python object under mdb.customData; for example, strings,
numbers, and Python classes. However, there are some restrictions; for example, you cannot store file
objects. These restrictions are due to the fact that the Abaqus/CAE infrastructure uses Python’s pickle
module to store the customData object in the model database. The pickle module allows the Python
programmer to write a data structure to a file and then recreate that data structure when reading from
the file. For details on the restrictions imposed by the pickle module, see the official Python web site
(www.python.org).

If your code creates a custom class and stores an instance of the class in the model database, the
custom module that defined that custom class must be available for Python to unpickle the data when
the database is subsequently opened. Consequently, if a user saves custom data to a model database
and then passes that model database to another user, the other user must also have access to the custom
modules that produced the custom data. Otherwise, they will not be able to load the custom data into
their Abaqus/CAE session.

Abaqus/CAE does not keep track of changes made to the customData object. As a result, when
the user quits a session, Abaqus/CAE will not prompt them to save their changes if they changed only
objects under customData.

5.6.2 Interaction with the GUI
In addition to providing a persistence mechanism, the customKernel module contains classes that
provide the following capabilities:

• Querying custom kernel data values from the GUI. From a GUI script you can access some attribute
of your custom kernel object, just as you would from the kernel. For example,

print mdb.customData.myObject.name

• Notification to the GUI when custom kernel data change. For example, you can have a manager
dialog box that lists the objects in a repository. When the contents of the repository change, you can
be notified and take the appropriate action to update the list of objects in the manager dialog box.

To make use of these features, you must derive your custom kernel objects from the classes listed in
the following sections. For more details on GUI customization, see the Abaqus GUI Toolkit Reference
Guide.

5–17

Abaqus ID:
Printed on:

EXTENDING THE Abaqus SCRIPTING INTERFACE

5.6.3 CommandRegister class
You can use the CommandRegister class to derive a general class that can be queried from the GUI. In
addition, the class can notify the GUI when its contents change. For example,

class Block(CommandRegister):
def __init__(self, name, ...):

CommandRegister.__init__(self)
...

If a query is registered by the GUI on an instance of this class, the GUI will be notified when a
member of this instance is changed, added, or deleted, For more details on registering queries, see the
Abaqus GUI Toolkit Reference Guide.

If your object is to be stored in a repository (see below), the first argument to the constructor
must be a string representing the name of the object. That string will automatically be assigned by
the infrastructure to a member called name.

5.6.4 Repositories
Repositories are containers that hold objects that are keyed by strings. It may be convenient to store your
custom kernel objects in repositories, in the same way that Abaqus/CAE part objects are stored in the
Parts repository.

The customData object is an instance of a RepositorySupport class, which provides a
Repository method that allows you to create a repository as an attribute of the instance. For more
information, see “RepositorySupport,” Section 5.6.6. The arguments to the Repository method are
the name of the repository and a constructor or a sequence of constructors. Those constructors must
have name as their first argument, and the infrastructure will automatically assign that value to a member
called name. Instances of these constructors will be stored in the repository. For more information, see
“Repository object,” Section 53.3 of the Abaqus Scripting Reference Guide.

Since repositories are designed to notify the GUI when their contents change, the objects placed
inside them should be derived from either CommandRegister or RepositorySupport to extend
this capability to its fullest.

The Abaqus Scripting Interface uses the following conventions:

• The name of a repository is a plural noun with all lowercase letters.
• A constructor is a capitalized noun (or a combination of capitalized nouns and adjectives).
• The first argument to the constructor must be name.

For example, the Part constructor creates a part object and stores it in the parts repository.
You can access the part object from the repository using the same name argument that you passed
in with the Part constructor. In some cases, more than one constructor can create instances that
are stored in the same repository. For example, the HomogeneousSolidSection and the

5–18

Abaqus ID:
Printed on:

EXTENDING THE Abaqus SCRIPTING INTERFACE

HomogeneousShellSection constructors both create section objects that are stored in the
sections repository. For more information, see “Abstract base type,” Section 6.1.5. For example,
the following script creates a blocks repository, and the Block constructor creates a block object
in the blocks repository:

from customKernel import CommandRegister
class Block(CommandRegister):

def __init__(self, name):
CommandRegister.__init__(self)

mdb.customData.Repository('blocks', Block)
block = mdb.customData.Block(name='Block-1')
print mdb.customData.blocks['Block-1'].name Block-1

5.6.5 Repository methods
Repositories have several useful methods for querying their contents, as shown in the following table:

Method Description

keys() Returns a list of the keys in the repository.

has_key() Returns 1 if the key is found in the repository; otherwise,
returns 0.

values() Returns a list of the objects in the repository.

items() Returns a list of key, value pairs in the repository.

changeKey(fromName,
toName)

Changes the name of a key in the repository. This method will
also change the name attribute of the instance in the repository.

The following script illustrates some of these methods:

from customKernel
import CommandRegister
class Block(CommandRegister):

def __init__(self, name):
CommandRegister.__init__(self)

mdb.customData.Repository('blocks', Block)
mdb.customData.Block(name='Block-1')
mdb.customData.Block(name='Block-2')
print 'The original repository keys are: ',

mdb.customData.blocks.keys()

5–19

Abaqus ID:
Printed on:

EXTENDING THE Abaqus SCRIPTING INTERFACE

print mdb.customData.blocks.has_key('Block-2')
print mdb.customData.blocks.has_key('Block-3')
mdb.customData.blocks.changeKey('Block-1', 'Block-11')
print 'The modified repository keys are: ',

mdb.customData.blocks.keys()
print 'The name member is ',

mdb.customData.blocks['Block-11'].name
print 'The repository size is', len(mdb.customData.blocks)

The resulting output is

The original repository keys are ['Block-1', 'Block-2']
1
0
The modified repository keys are ['Block-11', 'Block-2']
The name member is Block-11
The repository size is 2

5.6.6 RepositorySupport
You can use the RepositorySupport class to derive a class that can contain one or more repositories.
However, if you do not intend to create a repository as an attribute of your class, you should derive your
class from CommandRegister, not from RepositorySupport.

Using the RepositorySupport class allows you to create a hierarchy of repositories; for
example, in the Abaqus Scripting Interface the parts repository is a child of the models repository.
The first argument passed into your constructor is stored as name; it is created automatically by the
infrastructure. To create a hierarchy of repositories, derive your class from RepositorySupport
and use its Repository method to create child repositories as shown below. The Repository
method is described in “Repositories,” Section 5.6.4.

from abaqus import *
from customKernel import CommandRegister, RepositorySupport
class Block(CommandRegister):

def __init__(self, name):
CommandRegister.__init__(self)

class Model(RepositorySupport):
def __init__(self, name):

RepositorySupport.__init__(self)
self.Repository('blocks', Block)

5–20

Abaqus ID:
Printed on:

EXTENDING THE Abaqus SCRIPTING INTERFACE

mdb.customData.Repository('models', Model)
mdb.customData.Model('Model-1')
mdb.customData.models['Model-1'].Block('Block-1')

The path to the object being created can be found by calling repr(self) in the constructor of your
object.

5.6.7 Registered dictionaries
You use the RegisteredDictionary class to create a dictionary that can be queried from the GUI.
In addition, the infrastructure can notify the GUI when the contents of the dictionary change. The key of
a registered dictionary must be either a String or an Int. The values associated with a key must all be of
the same type—all integers or all strings, for example—to prevent errors when accessing them from the
GUI. The RegisteredDictionary class has the same methods as a Python dictionary. In addition,
the RegisteredDictionary class has a changeKey method that you use to rename a key in the
dictionary. For example,

from customKernel import RegisteredDictionary
mdb.customData.myDictionary = RegisteredDictionary()
mdb.customData.myDictionary['Key-1'] = 1
mdb.customData.myDictionary.changeKey('Key-1', 'Key-2')

5.6.8 Registered lists
You use the RegisteredList class to create a list that can be queried from the GUI. In addition,
the infrastructure can notify the GUI when the contents of the list change. The values in the list must
all be of the same type—all integers or all strings, for example—to prevent errors when accessing them
from the GUI. The values must all be of the same type; for example, all integers or all strings. The
RegisteredList has the same methods as a Python list. For example, appending Item-1 to the list
in the following statements causes the infrastructure to notify the GUI that the contents of the list have
changed:

from customKernel import RegisteredList
mdb.customData.myList = RegisteredList()
mdb.customData.myList.append('Item-1')

5.6.9 Registered tuples
You use the RegisteredTuple class to create a tuple that can be queried from the GUI. In addition,
the infrastructure can notify the GUI when the contents of any of the members of the tuple change. The
members in the tuple must derive from the CommandRegister class, and the values in the tuple must
all be of the same type; for example, all integers or all strings. For example,

5–21

Abaqus ID:
Printed on:

EXTENDING THE Abaqus SCRIPTING INTERFACE

from abaqus import *
from customKernel import CommandRegister, RegisteredTuple
class Block(CommandRegister):

def __init__(self, name):
CommandRegister.__init__(self)

mdb.customData.Repository('blocks', Block)
block1 = mdb.customData.Block(name='Block-1')
block2 = mdb.customData.Block(name='Block-2')
tuple = (block1, block2)
mdb.customData.myTuple = RegisteredTuple(tuple)

5.6.10 Session data

The customKernel module also provides a session.customData object that allows you to store data
on the session object and query it from the GUI. Data stored on the session object persist only for the
current Abaqus/CAE session. When you close the Abaqus/CAE session, Abaqus does not store any of
the data below session.customData on the model database. As a result, these data will be lost, and
you will not be able to retrieve these data when you start a new session and open the model database.
The session object is useful for maintaining data relevant to the current session only, such as the current
model or output database.

The same methods and classes that are available for mdb.customData are available for
session.customData.

5.6.11 Saving application data in a model database

If you have custom kernel scripts that store data in a model database, you may want to store information
about your application in the same model database. When the model database is opened subsequently,
you can access this information and decide how to proceed. For example, you can store version
information and check if you need to upgrade your data in the model database.

You use the appData object to store custom application-related data in the model database. The
appData object is an instance of an AbaqusAppData class. You can add any attributes to the appData
object that are necessary to track information about your custom application. The following example
illustrates how you can store the version number of your application on the appData object:

import customKernel
myAppData = customKernel.AbaqusAppData()
myAppData.majorVersion = 1
myAppData.minorVersion = 2
myAppData.updateVersion = 3

5–22

Abaqus ID:
Printed on:

EXTENDING THE Abaqus SCRIPTING INTERFACE

You use the setAppDatamethod to install an appData object as session.customData.appData and
to associate it with your application name. For example:

myAppName = ‘My App’
customKernel.setAppData(myAppName, myAppData)

You can call the setAppData method only once per application name, which prevents unauthorized
changes to the method. However, thesetAppDatamethodmay be called multiple times using different
application names to allow more than one application to register with the same model database.

When the user saves a model database, Abaqus copies the session.customData.appData object to
the mdb.customData.appData object.

5.6.12 Checking a model database when it is opened

If you have custom kernel scripts that use custom data in amodel database, youmaywant your application
to verify some of the contents of a model database before it is fully opened. For example, you may want
to check the database to see if you need to upgrade the data that is stored in it. In addition, you may need
to initialize a new model database with your custom data. Two methods are provided for verifying and
initializing a model database: verifyMdb and initializeMdb.

Verifying a model database

TheverifyMdbmethod is used to verify the partial contents of amodel database when it is opened.
You must write the verifyMdb method and install it using the setVerifyMdb method. You
can call the setVerifyMdbmethod only once per application name, which prevents unauthorized
changes to the method. However, the setVerifyMdbmethod may be called multiple times using
different application names to allow more than one application to register with the same model
database.

When Abaqus opens a model database, its first action is to load only the
mdb.customData.appData object and pass that object to each verifyMdb method registered in
the session. If the model database has no appData, then Abaqus passes None to each verifyMdb
method. Inside your verifyMdb method you can query the appData object to determine if you
need to take any action, such as upgrading your data.

Initializing a model database

If a script creates a new model database, you can initialize the model database with your custom
objects using the initializeMdb method. Abaqus calls each initializeMdb method
registered with the session whenever a new model database is created. You must write the
initializeMdb method and install it using the setInitializeMdb method. You can call
the setInitializeMdb method only once per application name, which prevents unauthorized
changes to the method. However, the setInitializeMdb method may be called multiple

5–23

Abaqus ID:
Printed on:

EXTENDING THE Abaqus SCRIPTING INTERFACE

times using different application names to allow more than one application to register with the
same model database.

Kernel initialization scripts specified by the startup command line option are executed by
Abaqus/CAE after it has finished its initialization process. By that time, a new model database or
a database specified on the command line using the database option has already been opened. A
utility method called processInitialMdb has been created to automatically process the initial
model database for you. If the initial model database does not have any customData or does not have
customData for your particular application, your initializeMdb method will be called. If the initial
model database has customData for your application, your verifyMdb method will be called.

The following example shows how you can use the verifyMdb, intializeMdb, and
processInitialMdb methods. You should execute the example using the startup command line
option when you start Abaqus/CAE. For more information, see “Abaqus/CAE execution,” Section 3.2.7
of the Abaqus Analysis User’s Guide.

from abaqus import mdb, session
import customKernel
myAppName = 'My App'
myAppData = customKernel.AbaqusAppData()
myAppData.majorVersion = 1
myAppData.minorVersion = 1
myAppData.updateVersion = 1
customKernel.setAppData(myAppName, myAppData)
#~~~
def verifyMdb(mdbAppData):

If there is no appData, initialize the MDB.
#
if mdbAppData==None:

initializeMdb()
return

If my application is not in appData, initialize the MDB.
#
if not mdbAppData.has_key(myAppName):

initializeMdb()
return

Perform any checks on the appData or customData here

Set the verifyMdb method for the application.
setVerifyMdb may be called only once per application name.
#
customKernel.setVerifyMdb(myAppName, verifyMdb)

5–24

Abaqus ID:
Printed on:

EXTENDING THE Abaqus SCRIPTING INTERFACE

#~~
def initializeMdb():

Initialize the MDB here

Set the initializeMdb method for this application.
setInitializeMdb may be called only once per application name.
#
customKernel.setInitializeMdb(myAppName, initializeMdb)

This file is executed after Abaqus/CAE has started, so we need to
process the initial MDB (either a new, empty MDB created by Abaqus/CAE,
or a database opened via the -database command line argument).
#
customKernel.processInitialMdb(myAppName)

5–25

Abaqus ID:
Printed on:

THE Abaqus OBJECT MODEL

6. Using the Abaqus Scripting Interface with Abaqus/CAE

This section discusses how you can use the Abaqus Scripting Interface to control Abaqus/CAE models
and analysis jobs. The following topics are covered:

• “The Abaqus object model,” Section 6.1
• “Copying, deleting, and renaming Abaqus Scripting Interface objects,” Section 6.2
• “Abaqus/CAE sequences,” Section 6.3
• “Namespace,” Section 6.4
• “Specifying what is displayed in the viewport,” Section 6.5
• “Specifying a region,” Section 6.6
• “Prompting the user for input,” Section 6.7
• “Interacting with Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD,” Section 6.8
• “Using Abaqus Scripting Interface commands in your environment file,” Section 6.9

6.1 The Abaqus object model

We have already discussed how Python provides built-in objects like integers, lists, dictionaries, and
strings. When you are writing Abaqus Scripting Interface scripts, you need to access these built-in
objects together with the objects used by Abaqus/CAE. These Abaqus Scripting Interface objects extend
Python with new types of objects. The hierarchy and the relationship between these objects is called
the Abaqus object model. The following sections describe the Abaqus object model in more detail. The
following topics are covered:

• “An overview of the Abaqus object model,” Section 6.1.1
• “Using tab completion to explore the object model,” Section 6.1.2
• “The Model object model,” Section 6.1.3
• “Using the object model,” Section 6.1.4
• “Abstract base type,” Section 6.1.5
• “Importing modules to extend the object model,” Section 6.1.6

6.1.1 An overview of the Abaqus object model
The object model is an important concept in object-oriented programming. The object model consists of
the following:

• A definition of each Abaqus Scripting Interface object including its methods and data members.
The object definitions are found in the Abaqus Scripting Reference Guide.

6–1

Abaqus ID:
Printed on:

THE Abaqus OBJECT MODEL

• Definitions of the relationships between the objects. These relationships form the structure or
the hierarchy of the object model. The relationships between the objects are summarized in the
following list:

Ownership

The ownership hierarchy defines the access path to the objects in the Abaqus model.

Associations

Associations describe the relationships between the objects; for example, whether one object
refers to another and whether an object is an instance of another.

Abaqus extends Python with approximately 500 additional objects, and there are many relationships
between these objects. As a result, the complete Abaqus object model is too complex to illustrate in a
single figure.

In general terms the Abaqus object model is divided into the Session, the Mdb, and the Odb objects,
as shown in Figure 6–1.

mdb

jobs

models

parts

sketches

 = Container
 = Singular object

viewports

session

rootAssembly
odb

fieldReportOptions

parts

sectionCategories

steps

Model

Figure 6–1 The Abaqus object model.

An object in the object model can be one of the following:

Container

A Container is an object that contains objects of a similar type. A container in the Abaqus object
model can be either a repository or a sequence. For example, the steps container is a repository
that contains all the steps in the analysis. Your scripts use the steps container to access a step.

6–2

Abaqus ID:
Printed on:

THE Abaqus OBJECT MODEL

Singular object

Objects that are not containers are shown as a Singular object. A singular object contains no
other objects of a similar type; for example, the Session object and the Mdb object. There is only
one Session object and only one Mdb object in the Abaqus object model.

The “...” at the end of the object models shown in this section indicates that there are additional objects
in the model that are not included in the figure. For clarity, the figures show only the most commonly
used objects in the object model.

The statement from abaqus import * imports the Session object (named session) and the
Mdb object (named mdb) and makes them available to your scripts. The statement from odbAccess
import * allows you to access Abaqus output results from your script. The Session, Mdb, and Odb
objects are described as follows:

Session

Session objects are objects that are not saved between Abaqus/CAE sessions; for example, the
objects that define viewports, remote queues, and user-defined views, as shown in Figure 6–2. The
viewports container is owned by the Session object, as shown in Figure 6–3.

Mdb

The statementfrom abaqus import * creates an instance of theMdb object called mdb. Mdb
objects are objects that are saved in a model database and can be recovered between Abaqus/CAE
sessions. Mdb objects include the Model object and the Job object. The Model object, in turn, is
comprised of Part objects, Section objects, Material objects, Step objects, etc. Figure 6–4 shows
the basic structure of the objects under the Model object. For more information, see “The Model
object model,” Section 6.1.3.

Odb

Odb objects are saved in an output database and contain both model and results data, as shown in
Figure 6–5.

Most of the commands in the Abaqus Scripting Interface begin with either the Session, the Mdb, or the
Odb object. For example,

session.viewports['Viewport-1'].bringToFront()
mdb.models['wheel'].rootAssembly.regenerate()
stress = odb.steps['Step-1'].frames[3].fieldOutputs['S']

6.1.2 Using tab completion to explore the object model

You can use tab completion from the command line interface to speed up your typing and to explore
the object model. For example, you can type mdb.models[’Model-1’].parts[in the command

6–3

Abaqus ID:
Printed on:

THE Abaqus OBJECT MODEL

odbs
defaultOdbDisplay

displayGroups

colors

printOptions

xyReportOptions

sketcherOptions

defaultViewportAnnotationOptions

epsOptions
pngOptions
tiffOptions
aviOptions
animationController

probeOptions
probeReport

selectedProbeValues

psOptions

queues

views

paths

viewports

fieldReportOptions

xyDataObjects
xyPlots

 = Container
 = Singular object

session

Figure 6–2 The Session object model.

6–4

Abaqus ID:
Printed on:

THE Abaqus OBJECT MODEL

assemblyDisplay

displayedObject

odbDisplay

partDisplay

view

viewportAnnotationOptions

viewports

 = Container
 = Singular object

session

Viewport

displayMode

Figure 6–3 The Viewport object model.

historyOutputReqests

Model

adaptivemeshControls

amplitudes

boundaryConditions

constraints

interactions

interactionProperties

loads

materials

parts

profiles

rootAssembly

sections

sketches

steps

 = Container
 = Singular object

fieldOutputReqests

models

Figure 6–4 The structure of the objects under the Model object.

line interface. When you press the [Tab] key, the command line cycles through the parts in the model.
When you press [Shift] + [Tab], the command line cycles backwards through the parts in the model.

6–5

Abaqus ID:
Printed on:

THE Abaqus OBJECT MODEL

parts

steps

fieldOutputs

historyPoints

historyOutputs

 = Container
 = Singular object

odb
rootAssembly

sectionCategories

Step

historyRegions

frames

HistoryRegion

Frame

Figure 6–5 The Odb object model.

Tab completion also searches the file system when it detects an incomplete string. For example,

from part import THR[Tab]
from part import THREE_D

openMdb('hinge_t[Tab]
openMdb('hinge_tutorial.mdb')

from odbAccess import *
myOdb=openOdb('vi[Tab]
myOdb=openOdb('viewer_tutorial.odb')

In most cases when you type in a constructor or a method and include the opening parenthesis, tab
completion prompts you to provide a value for a keyword argument. For example,

mdb.models['Model-1'].Part([Tab]
mdb.models['Model-1'].Part(name=

When you press the [Tab] key, the command line cycles through the arguments to the method.
You can use tab completion when you are accessing an output database. For example,

p=myOdb.parts[[Tab]
p=myOdb.parts['Part-1']

You can also use tab completion when you are accessing an output database from the Abaqus Python
prompt. For example,

6–6

Abaqus ID:
Printed on:

THE Abaqus OBJECT MODEL

abaqus python
>>>from odbAccess import *
>>>myOdb=openOdb('viewer_tutorial.odb')
>>>p=myOdb.parts[[Tab]
>>>p=myOdb.parts['Part-1']

6.1.3 The Model object model
The Model object contains many objects. Figure 6–6 and Figure 6–7 show the most commonly used
objects that are contained in the Part and RootAssembly.

parts

features

datums

cells

faces

edges

vertices

elements

nodes

referencePoints

sets

reinforcements

 = Container
 = Singular object

Part

models

Figure 6–6 The Part object model.

The Job object is separate from the Model object. The object model for the Job object is
straightforward; the Job object owns no other objects. The Job object refers to a Model object but is
not owned by the Model object.

6.1.4 Using the object model
Object model figures such as Figure 6–4 provide important information to the Abaqus Scripting Interface
programmer.

6–7

Abaqus ID:
Printed on:

THE Abaqus OBJECT MODEL

models

features

datums

surfaces

sets

instances

datums

cells

faces

edges

vertices

elements

nodes

 = Container
 = Singular object

rootAssembly

referencePoints

PartInstance

sets

Figure 6–7 The RootAssembly object model.

• The object model describes the relationships between objects. For example, in object-oriented
programming terms a geometry object, such as a Cell, Face, Edge, or Vertex object, is said to be
“owned” by the Part object. The Part object, in turn, is owned by the Model object. This ownership
relationship between objects is referred to as the ownership hierarchy of the object model.

Ownership implies that if an object is copied, everything owned by that object is also copied.
Similarly, if an object is deleted, everything owned by the object is deleted. This concept is similar
to parent-child relationships in Abaqus/CAE. If you delete a Part, all the children of the part—such
as geometry, datums, and regions—are also deleted.

• The relationships between objects are described in the Path and Access descriptions in the
command reference. For example, the following statement uses the path to a Cell object:

cell4 = mdb.models['block'].parts['crankcase'].cells[4]

The statement mirrors the structure of the object model. The Cell object is owned by a Part object,
the Part object is owned by a Model object, and the Model object is owned by the Mdb object.

• The associations between the objects are captured by the object model. Objects can refer to other
objects; for example, the section objects refer to a material, and the interaction objects refer to a

6–8

Abaqus ID:
Printed on:

THE Abaqus OBJECT MODEL

region, to steps, and possibly to amplitudes. An object that refers to another object usually has a
data member that indicates the name of the object to which it is referring. For example, material is
a member of the section objects, and createStepName is a member of the interaction objects.

6.1.5 Abstract base type

The Abaqus object model includes the concept of an abstract base type. An abstract base type allows
similar objects to share common attributes. For example, pressure and concentrated force are both
kinds of loads. Object-oriented programmers call the relationship between pressure and load an “is a”
relationship—a pressure is a kind of load. In this example “Load” is the name of the abstract base type.
In the type hierachy Pressure and ConcentratedForce types have a base type Load. A Pressure “is a”
Load.

In Figure 6–8 AnalysisStep and Step are both abstract base types. In terms of the real world a static
step is an analysis step and a static step is also a step. In terms of the object model a StaticStep object is
an AnalysisStep object and a StaticStep object is also a Step object.

Step

InitialStep AnalysisStep

StaticStep BuckleStep

Figure 6–8 An example of the “is a” relationships between objects.

In contrast the object model figures described at the beginning of this section show what object-oriented
programmers call “has a” relationships between objects. For example, a session has a viewport
repository, and a model has a root assembly.

Abaqus uses the name of the abstract base type as the name of the repository that contains
objects of similar types. For example, the StaticStep, BuckleStep, and FrequencyStep
constructors all create objects in the steps repository. Other abstract base types include Amplitude,
BoundaryCondition, Datum, Field, Interaction, and Section.

The term “abstract” implies that the Abaqus object model does not contain an object that has the
type of an abstract base type. For example, there are no objects of type Load or Step in the Abaqus
object model. In contrast, the Feature object is a base type, but it is not abstract. The Abaqus object
model includes Feature objects.

6–9

Abaqus ID:
Printed on:

THE Abaqus OBJECT MODEL

6.1.6 Importing modules to extend the object model
To access the objects referred to by the Model object, such as Part and Section objects, Abaqus/CAE
extends or augments the object model by importing additional modules. For example, to create or access
a Part object, Abaqus/CAE needs to import the part module. Abaqus/CAE imports all the modules
when you start a session. As a result the entire object model is available to your scripts.

However, in some cases, your script may need to import a module; for example, to access a module
constant, type, or function. In addition, it is useful for you to know which module Abaqus/CAE imported
to augment the object model with a particular object. You have already seen the syntax to import a
module:

import part
import section

In general, you should use the following approach to importing Abaqus modules:

import modulename

The description of an object in the Abaqus Scripting Reference Guide includes an Access section
that describes which module Abaqus/CAE imported to make the object available and how you can access
the object from a command. After Abaqus/CAE imports a module, all the objects associated with the
module become available to you. In addition, all the methods and members associated with each object
are also available.

The following table describes the relationship between some of the modules in the Abaqus Scripting
Interface and the functionality of the modules and toolsets found in Abaqus/CAE:

Module Abaqus/CAE functionality

assembly The Assembly module

datum The Datum toolset

interaction The Interaction module

job The Job module

load The Load module

material Materials in the Property module

mesh The Mesh module

part The Part module

partition The Partition toolset

section Sections in the Property module

sketch The Sketch module

6–10

Abaqus ID:
Printed on:

COPYING, DELETING, AND RENAMING Abaqus SCRIPTING INTERFACE OBJECTS

Module Abaqus/CAE functionality

step The Step module

visualization The Visualization module

xyPlot The X–Y toolset

6.2 Copying, deleting, and renaming Abaqus Scripting Interface
objects

The following section describes how you copy and delete Abaqus Scripting Interface objects. The
following topics are covered:

• “Creating a copy of an object,” Section 6.2.1
• “More on copying objects,” Section 6.2.2
• “Deleting objects,” Section 6.2.3
• “Renaming objects,” Section 6.2.4

6.2.1 Creating a copy of an object
Most Abaqus objects have a method that creates a copy of the object. The same command provides the
name of the new object. Methods that create a copy of an object are called copy constructors. Although
copy constructors exist for most objects, in most cases they are not documented in the Abaqus Scripting
Reference Guide. The format of a copy constructor is

ObjectName(name='name', objectToCopy=objectToBeCopied)

A copy constructor returns an object of the type of objectToBeCopiedwith the given name. For example,
the following statements show you can create a Part object and then use a copy constructor to create a
second Part object that is a copy of the first:

firstBolt = mdb.models['Metric'].Part(
name='boltPattern', dimensionality=THREE_D,
type=DEFORMABLE_BODY)

secondBolt = mdb.models['Metric'].Part(
name='newBoltPattern', objectToCopy=firstBolt)

You can also use the copy constructor to create a new object in a different model.

firstBolt = mdb.models['Metric'].Part(
name='boltPattern', dimensionality=THREE_D,

6–11

Abaqus ID:
Printed on:

COPYING, DELETING, AND RENAMING Abaqus SCRIPTING INTERFACE OBJECTS

type=DEFORMABLE_BODY)
secondBolt = mdb.models['SAE'].Part(

name='boltPattern', objectToCopy=firstBolt)

6.2.2 More on copying objects

To create a copy of an object, some objects use the base type described in “Abstract base type,”
Section 6.1.5. For example, to copy a HomogeneousSolidSection object, you use the abstract base type
Section constructor.

import material
import section
impactModel = mdb.Model(name='Model A')
mySteel = impactModel.Material(name='Steel')

Create a section

firstSection = impactModel.HomogeneousSolidSection(
name='steelSection 1', material='Steel',
thickness=1.0)

Copy the section

secondSection = impactModel.Section(
name='steelSection 2', objectToCopy=firstSection)

6.2.3 Deleting objects

In general, if you can create an object, you can delete the object. For example, the following statements
create a Material object in the material repository:

myMaterial = mdb.models['Model-1'].Material(name='aluminum')

You can use the Python del statement to delete an object, but you must provide the full path to the
object.

del mdb.models['Model-1'].materials['aluminum']

The variable myMaterial that referred to the object still exists; however, the variable no longer refers
to the object. You can use the del statement to delete the variable.

del myMaterial

6–12

Abaqus ID:
Printed on:

COPYING, DELETING, AND RENAMING Abaqus SCRIPTING INTERFACE OBJECTS

Conversely, if you create the object as before but delete the variable that referred to the object, only
the variable is deleted; the object still exists. You can assign a new variable to the object.

6–13

Abaqus ID:
Printed on:

Abaqus/CAE SEQUENCES

myMaterial = mdb.models['Model-1'].Material(name='aluminum')
del myMaterial
myNewMaterial = mdb.models['Model-1'].materials['aluminum']

The previous explanation does not apply to the few Abaqus/CAE objects that are not members of
either an Mdb object or a Session object; for example, XYData and Leaf objects. These objects are
sometimes referred to as “temporary,” and the delete semantics for these objects are the same as for
standard Python objects. The object exists as long as there is a reference to it. If you delete the reference,
the object is also deleted.

6.2.4 Renaming objects
When you rename an object, variables that refer to that object may become stale, depending on the
implementation detail of that object interface. It is always best to create new variables after you rename
an object.

6.3 Abaqus/CAE sequences

Some methods take arguments that are described as “a sequence of sequences of Floats” or “a
sequence of sequences of Ints.” Data that are entered into the table editor in Abaqus/CAE appear as a
sequence of sequences in the equivalent Abaqus Scripting Interface command. In effect the data are a
two-dimensional array. The data across one row form one sequence, and multiple rows form a sequence
of those sequences. For example, consider the case where the user is creating an elastic material and
describing a temperature-dependent behavior.

The equivalent Abaqus Scripting Interface command is

mdb.models['Model-1'].materials['steel'].Elastic(
temperatureDependency=True, table=(
(200.0E9, 0.3, 0.0),
(210.0E9, 0.3, 100.0),
(220.0E9, 0.3, 250.0),

6–14

Abaqus ID:
Printed on:

Abaqus/CAE SEQUENCES

(225.0E9, 0.3, 500.0)))

The table argument is described in the Abaqus Scripting Reference Guide as a sequence of sequences of
Floats.

Lists, tuples, strings, and arrays are described in “Sequences,” Section 4.5.4. In addition, the Abaqus
Scripting Interface defines some of its own sequences that contain objects of the same type.

GeomSequence

A GeomSequence is a sequence of geometry objects, such as Vertices or Edges. An Edge sequence
is derived from the GeomSequence object. Use the len() function to determine the number of
objects in a GeomSequence. A GeomSequence has methods and members too.

For example, the following creates a three-dimensional part by extruding a 70 × 70 square
through a distance of 20. The members of the resulting Part object are listed along with some
information about the sequence of Edge objects.

mdb.Model('Body')
mySketch = mdb.models['Body'].ConstrainedSketch(

name='__profile__', sheetSize=200.0)
mySketch.rectangle(point1=(0.0, 0.0),

point2=(70.0, 70.0))
switch = mdb.models['Body'].Part(name='Switch',

dimensionality=THREE_D, type=DEFORMABLE_BODY)
switch.BaseSolidExtrude(sketch=mySketch, depth=20.0)

The following statement displays the members of the resulting three-dimensional part:

>>> print mdb.models['Body'].parts['Switch'].__members__
['allInternalSets', 'allInternalSurfaces', 'allSets',
'allSurfaces', 'cell', 'cells', 'datum', 'datums', 'edge',
'edges', 'elemEdge', 'elemEdges', 'elemFace', 'elemFaces',
'element', 'elements', 'engineeringFeatures', 'face',
'faces', 'feature', 'featureById', 'features',
'featuresById', 'geometryPrecision', 'geometryRefinement',
'geometryValidity', 'ip', 'ips', 'isOutOfDate', 'modelName',
'name', 'node', 'nodes', 'referencePoint', 'referencePoints',
'reinforcement', 'reinforcements', 'sectionAssignments',
'sets', 'space', 'surfaces', 'twist', 'type',
'vertex', 'vertices']

The edges, faces, vertices, cells, and ipsmembers are all derived from the GeomSequence object.
The following statements display some information about the edges sequence:

>>> print 'Single edge type = ', type(switch.edges[0])
Single edge type = <type 'Edge'>

6–15

Abaqus ID:
Printed on:

NAMESPACE

>>> print 'Edge sequence type = ', type(switch.edges)
Edge sequence type = <type 'EdgeArray'>

>>> print 'Members of edge sequence = ',
switch.edges.__members__

Members of edge sequence = ['pointsOn']

>>> print 'Number of edges in sequence = ',
len(switch.edges)

Number of edges in sequence = 12

MeshSequence

A sequence of Nodes or Elements.

SurfSequence

A sequence of Surfaces.

6.4 Namespace

Namespace is an important concept for the Abaqus Scripting Interface programmer. A namespace can
be thought of as a program execution environment, and namespaces are independent of each other.
Namespaces prevent conflict between variable names. You can use the same variable name to refer
to different objects in different name spaces. Figure 6–9 illustrates how commands interact with the
Abaqus/CAE kernel. Abaqus Scripting Interface commands are issued to the Python interpreter from
either the GUI, the command line interface, or a script. Abaqus/CAE executes these commands in one
of two namespaces.

Script namespace

Abaqus Scripting Interface commands issued from scripts and from the command line interface are
executed in the script namespace. Commands issued from File→Run Script are also executed in
the script namespace. For example, if you enter the following statement from the command line
interface to create a viewport:

myViewport = session.Viewport(name='newViewport',
width=100, height=100)

the variable myViewport exists only in the script namespace. The name of the script namespace
is main.

6–16

Abaqus ID:
Printed on:

NAMESPACE

GUI

command
line

interface
(CLI)

script

Python
interpreter

replay
files

Abaqus/CAE
kernel

commands

input file

Abaqus/Standard
Abaqus/Explicit

output database

Abaqus/CAE

Abaqus/Design
Abaqus/CFD

Figure 6–9 The Abaqus Scripting Interface and the Abaqus/CAE kernel.

Journal namespace

Abaqus Scripting Interface commands issued by the GUI are executed in the journal namespace.
For example, if you use the GUI to partition an edge, Abaqus/CAE writes the following statements
to the replay file, abaqus.rpy:

p1 = mdb.models['Model A'].parts['Part 3D A']
e = p1.edges
edges =(e[23],)
p1.PartitionEdgeByParam(edges=edges, parameter=0.5)

The variables defined in the replay file (p1, e, and edges, in the above example) exist only in
the journal namespace. Abaqus/CAE issues an exception if you attempt to refer to one of these

6–17

Abaqus ID:
Printed on:

SPECIFYING WHAT IS DISPLAYED IN THE VIEWPORT

variables from the script namespace. For example, the following statement was issued from the
command line interface and tries to partition the same edge:

p1.PartitionEdgeByParam(edges=edges, parameter=0.75)
NameError: p1

The name of the journal namespace is journaling.

The statement from abaqus import * described in “Executing scripts,” Section 5.1, imports
themdb variable into the script namespace. You can then use themdb variable in your scripts to access the
objects in the object model. Although variables in one namespace are not visible to the other namespace,
the object repositories are now available in both. As a result, an object created in one namespace can still
be referred to in another namespace if you use its full path (mdb.models[’Model A’]...) and its
repository key.

For example, although the variable p1 in the above statement cannot be accessed from the script
namespace, you can still use the command line interface to access the part to which p1 referred.

myPart = mdb.models['Model A'].parts['Part 3D A']

The model and part repositories are available in both the journal and script namespaces. You can also
create your own variable p1 from the command line interface or from a script.

p1 = myPart

The variable p1 in the script namespace is independent of the variable p1 in the journal namespace.

6.5 Specifying what is displayed in the viewport

While a script is running and moving between models, modules, parts, and assemblies, you can control
the contents of specified viewports. The contents can be one of the following:

• A part
• The assembly
• A sketch
• Data from an output database
• An X–Y plot

• Empty
In some cases you will want to update the contents of the viewport as the model changes; for example, to
illustrate how the assembly was partitioned prior to meshing. However, frequent updates to a viewport
will slow down your script, and you may want to leave the viewport empty until the script has completed.
Alternatively, you can display an object that the script is not operating on; for example, you can display
a part while the script operates on the assembly.

You use the following command to change the contents of a specified viewport:

6–18

Abaqus ID:
Printed on:

SPECIFYING A REGION

session.viewports[name].setValues(displayedObject=object)

The displayedObject argument can be a Part, Assembly, Sketch, Odb, or XYPlot object or None.
If displayedObject=None, Abaqus/CAE displays an empty viewport. For more information, see
“setValues,” Section 11.4.22 of the Abaqus Scripting Reference Guide.

6.6 Specifying a region

Many of the commands used by the Abaqus Scripting Interface require a region argument. For example,

• Load commands use the region argument to specify where the load is applied. You apply a
concentrated force to vertices; you apply pressure to a face or an edge.

• Mesh commands, such as setting the element type and creating the mesh, use the region argument
to specify where the operation should be applied.

• Set commands use the region argument to specify the region that comprises the set.

A region can be either a predefined Set or Surface object or a temporary Region object. For more
information, see Chapter 45, “Region commands,” of the Abaqus Scripting Reference Guide.

You should not rely on the integer id to identify a vertex, edge, face, or cell in a region command;
for example, myFace=myModel.parts[’Door’].faces[3]. The id can change if you add or
delete features to your model; in addition, the id can change with a new release of Abaqus.

Rather than using the integer id, you should use the findAt method to identify a vertex, edge,
face, or cell. The arguments to findAt are an arbitrary point on an edge, face, or cell or the X-, Y-, and
Z-coordinates of a vertex. findAt returns an object that contains the id of the vertex or the id of the
edge, face, or cell that includes the arbitrary point.

findAt initially uses the ACIS tolerance of 1E-6. As a result, findAt returns any entity that is at
the arbitrary point specified or at a distance of less than 1E-6 from the arbitrary point. If nothing is found,
findAt uses the tolerance for imprecise geometry (applicable only for imprecise geometric entities).
If necessary, it can open the tolerance further to find a suitable object. The arbitrary point must not be
shared by a second edge, face, or cell. If two entities intersect or coincide at the arbitrary point, findAt
chooses the first entity that it encounters, and you should not rely on the return value being consistent.

Alternatively, if you are working with an existing model that contains named regions, you can
specify a region by referring to its name. For example, in the example described in “Investigating the
skew sensitivity of shell elements,” Section 8.3, you create a model using Abaqus/CAE. While you
define the model, you must create a set that includes the vertex at the center of a planar part and you must
name the set CENTER. You subsequently run a script that parameterizes the model and performs a series
of analyses. The script uses the named region to retrieve the displacement and the bending moment
at the center of the plate. The following statement refers to the set that you created and named using
Abaqus/CAE:

centerNSet = odb.rootAssembly.nodeSets['CENTER']

6–19

Abaqus ID:
Printed on:

SPECIFYING A REGION

The following script illustrates how you can create a region. Regions are created from each of the
following:

• A sequence of tuples indicating the vertices, edges, faces, or cells in the region. The sequence can
include multiple tuples of the same type.

• A sequence of tuples indicating a combination of the vertices, edges, faces, and cells in the region.
The tuples can appear in any order in the sequence. In addition, you can include multiple tuples of
the same type, and you can omit any type from the sequence.

• A Surface object specifying an entity and the side of the entity.
Use the following command to retrieve the script:

abaqus fetch job=createRegions

"""
createRegions.py

Script to illustrate different techniques for defining regions.
"""

Import the modules used by this script.

from abaqus import *
from abaqusConstants import *
import part
import assembly
import step
import load
import interaction

myModel = mdb.models['Model-1']

Create a new Viewport for this example.

myViewport=session.Viewport(name='Region syntax',
origin=(20, 20), width=200, height=100)

Create a Sketch and draw two rectangles.

mySketch = myModel.ConstrainedSketch(name='Sketch A',
sheetSize=200.0)

6–20

Abaqus ID:
Printed on:

SPECIFYING A REGION

mySketch.rectangle(point1=(-40.0, 30.0),
point2=(-10.0, 0.0))

mySketch.rectangle(point1=(10.0, 30.0),
point2=(40.0, 0.0))

Create a 3D part and extrude the rectangles.

door = myModel.Part(name='Door',
dimensionality=THREE_D, type=DEFORMABLE_BODY)

door.BaseSolidExtrude(sketch=mySketch, depth=20.0)

Instance the part.

myAssembly = myModel.rootAssembly
doorInstance = myAssembly.Instance(name='Door-1',

part=door)

Select two vertices.

pillarVertices = doorInstance.vertices.findAt(
((-40,30,0),), ((40,0,0),))

Create a static step.

myModel.StaticStep(name='impact',
previous='Initial', initialInc=1, timePeriod=1)

Create a concentrated force on the selected
vertices.

myPillarLoad = myModel.ConcentratedForce(
name='pillarForce', createStepName='impact',
region=(pillarVertices,), cf1=12.50E4)

Select two faces

topFace = doorInstance.faces.findAt(((-25,30,10),))
bottomFace = doorInstance.faces.findAt(((-25,0,10),))

6–21

Abaqus ID:
Printed on:

SPECIFYING A REGION

Create a pressure load on the selected faces.
You can use the "+" notation if the entities are of
the same type and are from the same part instance.

myFenderLoad = myModel.Pressure(
name='pillarPressure', createStepName='impact',
region=((topFace+bottomFace, SIDE1),),
magnitude=10E4)

Select two edges from one instance.

myEdge1 = doorInstance.edges.findAt(((10,15,20),))
myEdge2 = doorInstance.edges.findAt(((10,15,0),))

Create a boundary condition on one face,
two edges, and two vertices.

myDisplacementBc= myModel.DisplacementBC(
name='xBC', createStepName='impact',
region=(pillarVertices, myEdge1+myEdge2,
topFace), u1=5.0)

Select two faces using an arbitrary point
on the face.

faceRegion = doorInstance.faces.findAt(
((-30,15,20),), ((30,15,20),))

Create a surface containing the two faces.
Indicate which side of the surface to include.

mySurface = myModel.rootAssembly.Surface(
name='exterior', side1Faces=faceRegion)

Create an elastic foundation using the surface.

myFoundation = myModel.ElasticFoundation(
name='elasticFloor', createStepName='Initial',
surface=mySurface, stiffness=1500)

Display the assembly along with the new boundary

6–22

Abaqus ID:
Printed on:

PROMPTING THE USER FOR INPUT

conditions and loads.

myViewport.setValues(displayedObject=myAssembly)
myViewport.assemblyDisplay.setValues(step='impact',

loads=ON, bcs=ON, fields=ON)

6.7 Prompting the user for input

You may want to request input from a user while an Abaqus Scripting Interface script is executing. There
are many reasons for requesting input; for example, to specify design parameters, to enable a macro to
take action based on the input received, or to force parts of the script to be repeated. The Abaqus Scripting
Interface provides three functions that request input from the user and return the data entered by the user.

• The getInput function requests a single input from the user from a text field in a dialog box. For
more information, see “Requesting a single input from the user,” Section 6.7.1.

• The getInputs function requests multiple inputs from the user from text fields in a dialog box.
For more information, see “Requesting multiple inputs from the user,” Section 6.7.2.

• The getWarningReply function requests a reply to a warning message from the user from
a warning dialog box. For more information, see “Requesting a warning reply from the user,”
Section 6.7.3.

Note: You cannot use a script that contains getInput, getInputs or getWarningReply if you
are running the script from the command line and passing the script name to the command line options
-start,-replay or -noGUI.

6.7.1 Requesting a single input from the user

The getInput function displays a dialog box in the center of the main window, and the user enters
the requested value in the text field in the dialog box. The value is returned to the executing script as a
String after the user presses the [Enter] key or clicksOK. Optionally, you can specify a default value to be
displayed in the text field. The getInput function does not provide any error checking; it is the script
author’s responsibility to verify the user input. For more information, see “getInput,” Section 53.5.1 of
the Abaqus Scripting Reference Guide.

The following examples illustrate the use of the getInput function. The first example shows a
script that uses the getInput function to obtain a number from the user. The script then prints the
square root of that number.

from abaqus import getInput
from math import sqrt

6–23

Abaqus ID:
Printed on:

PROMPTING THE USER FOR INPUT

number = float(getInput('Enter a number:'))
print sqrt(number)

The float function on the third line converts the string returned by getInput into a floating point
number. The following figure shows the dialog box that appears when this script is executed:

The next example shows how to modify a macro recorded by theMacro Manager in Abaqus/CAE
to use the getInput function. The following text shows a macro named createViewport
that was recorded by Abaqus/CAE while the user created a viewport. Macros are stored in the file
abaqusMacros.py in your local or home directory.

from abaqus import *
def createViewport():

session.Viewport(name='Viewport: 2',
origin=(15.0,15.0), width=145.0,
height=90.0)

session.viewports['Viewport: 2'].makeCurrent()

The following shows how you can modify the macro to accept input from the user. Default values
for the viewport width and height have been added to the input request.

from abaqus import *
def createViewport():

name = getInput('Enter viewport name:')
prompt = 'Enter viewport width, height (mm):'
w, h = eval(getInput(prompt, '100,50'))
vp = session.Viewport(name=name, width=w, height=h)
vp.restore()
vp.makeCurrent()

The eval function in the third line of the macro converts the string returned by the getInput
function into two integers. When you supply the default values shown in this example to the getInput
function, the prompt and the text field in the dialog box that appears are shown in the following figure.
If the user clicks OK or presses [Enter], the default values are accepted and returned to the getInput
function. If the user clicks Cancel, None is returned.

6–24

Abaqus ID:
Printed on:

PROMPTING THE USER FOR INPUT

6.7.2 Requesting multiple inputs from the user
The getInputs function displays a dialog box in the center of the main window, and the user enters
the requested values in text fields in the dialog box. The values are returned to the executing script as
a sequence of Strings after the user clicks the OK button or presses [Enter]. Optionally, you can specify
default values to be displayed in the text fields. For more information, see “getInputs,” Section 53.5.2 of
the Abaqus Scripting Reference Guide.

The following examples illustrate the use of the getInputs function to obtain a sequence of
numbers from the user:

from abaqus import getInputs
fields = (('Width:','10'), ('Length:', '20'), ('Height:', '30'))
length, width, height =

getInputs(fields=fields, label='Specify block dimensions:',
dialogTitle='Create Block',)

print length, width, height

The following figure shows the dialog box that these statements create:

The fields argument to the getInputs method is a sequence of sequences of Strings. The inner
sequence is a pair of Strings that specifies the description of the text field and the default value of the
field. If the text field does not have a default value, you must specify an empty string; for example,

fields = (('Width',''), ('Length', ''), ('Height', ''))
length, width, height =

getInputs(fields=fields, label='Specify block dimensions:')

6–25

Abaqus ID:
Printed on:

PROMPTING THE USER FOR INPUT

The label argument to the getInputs method is an optional label that appears across the top of the
dialog box. The dialogTitle argument is an optional string that appears in the title bar of the dialog box.

If the user clicks Cancel, the getInputs method returns a sequence of None objects. You can
check the first value in the sequence to determine if the user clicked Cancel; for example:

6–26

Abaqus ID:
Printed on:

INTERACTING WITH Abaqus/Standard, Abaqus/Explicit, AND Abaqus/CFD

fields = (('Density',''), ('Youngs modulus', ''))
density, modulus = getInputs(fields, 'Material properties')
if density == None:

print 'User pressed Cancel'

6.7.3 Requesting a warning reply from the user
The getWarningReply function displays a warning dialog box in the center of the main window,
and the user clicks on one of the standard reply buttons in the dialog box. The clicked button value is
returned to the executing script. For more information, see “getWarningReply,” Section 53.5.3 of the
Abaqus Scripting Reference Guide.

The following example illustrates the use of the getWarningReply function:

from abaqus import getWarningReply, YES, NO

reply = getWarningReply(message='Okay to continue?', buttons=(YES,NO))
if reply == YES:

print 'YES clicked'
elif reply == NO:

print 'NO clicked'

The following figure shows the dialog box that appears when this script is executed:

6.8 Interacting with Abaqus/Standard, Abaqus/Explicit, and
Abaqus/CFD

The Job commands include methods that allow you to submit jobs to Abaqus/Standard, Abaqus/Explicit,
and Abaqus/CFD. This section describes how you can interact with Abaqus/Standard, Abaqus/Explicit,
and Abaqus/CFD and synchronize your scripts with the analysis job. The following topics are covered:

• “Processing messages from Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD,” Section 6.8.1
• “Waiting for a job to complete,” Section 6.8.2
• “An example of a callback function,” Section 6.8.3

6–27

Abaqus ID:
Printed on:

INTERACTING WITH Abaqus/Standard, Abaqus/Explicit, AND Abaqus/CFD

6.8.1 Processing messages from Abaqus/Standard, Abaqus/Explicit,
and Abaqus/CFD

You can use the addMessageCallback method to associate an event-driven function with a
particular message that is retrieved from Abaqus/Standard, Abaqus/Explicit, or Abaqus/CFD. When
Abaqus/CAE retrieves the specific message from Abaqus/Standard, Abaqus/Explicit, or Abaqus/CFD,
the function executes and takes the necessary action. This type of function is called a callback function.
The addMessageCallback method specifies which callback function to use for which message.
The arguments to addMessageCallback are:

• The name of the job to monitor for messages.
• The message from Abaqus/Standard, Abaqus/Explicit, or Abaqus/CFD that causes the callback
function to execute.

• The name of the callback function.
• An object to pass to the callback function.

These arguments allow you to associate the callback function with both a particular job and a particular
message. Alternatively, you can associate the callback function with all jobs and all messages. The
commands are described in Chapter 32, “Messaging commands,” of the Abaqus Scripting Reference
Guide.

The interface definition of the callback function is

def functionName(jobName, messageType, data, userData)

The arguments to the callback function are:

• jobName: A String specifying the name of the job to be monitored. You can also use the
SymbolicConstant ANY_JOB that specifies that the callback function will monitor messages from
all jobs.

• messageType: A SymbolicConstant specifying the message type that will call the callback
function. You can also use the SymbolicConstant ANY_MESSAGE_TYPE that specifies that all
messages will call the callback function. The following is a list of the message types issued by
Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD:

– ABORTED

– ANY_JOB

– ANY_MESSAGE_TYPE

– COMPLETED

– END_STEP

– ERROR

– HEADING

– HEALER_JOB

6–28

Abaqus ID:
Printed on:

INTERACTING WITH Abaqus/Standard, Abaqus/Explicit, AND Abaqus/CFD

– HEALER_TYPE

– INTERRUPTED

– ITERATION

– JOB_ABORTED

– JOB_COMPLETED

– JOB_INTERRUPTED

– JOB_SUBMITTED

– MONITOR_DATA

– ODB_FILE

– ODB_FRAME

– SIMULATION_ABORTED

– SIMULATION_COMPLETED

– SIMULATION_INTERRUPTED

– SIMULATION_SUBMITTED

– STARTED

– STATUS

– STEP

– WARNING

• data: A DataObject object containing the message data. The following list describes the members
of the DataObject object:

– clientHost: A String specifying the host name of the machine that is running the analysis.

– clientName: A String specifying the name of the client that sent the message. Possible values
are

– “BatchPre” (the input file preprocessor)

– “Packager” (the Abaqus/Explicit preprocessor packager)

– “Standard” (the Abaqus/Standard analysis)

– “Explicit” (the Abaqus/Explicit analysis)

– “Calculator” (the postprocessing calculator)

– phase: A SymbolicConstant specifying the phase of the analysis. Possible values are

• BATCHPRE_PHASE
• PACKAGER_PHASE
• STANDARD_PHASE
• EXPLICIT_PHASE
• CFD_PHASE

6–29

Abaqus ID:
Printed on:

INTERACTING WITH Abaqus/Standard, Abaqus/Explicit, AND Abaqus/CFD

• CALCULATOR_PHASE
• HEALER_PHASE

– processId: An Int specifying the process ID of the analysis program.

– threadId: An Int specifying the thread ID of the analysis program. Threads are used for parallel
or multiprocessing; in most cases threadId is set to zero.

– timeStamp: An Int specifying the time the message was sent in seconds since 00:00:00 UTC,
January 1, 1970.

• userData: Any Python object or None. This object is passed as the userData argument to
addMessageCallback.

The following script is an example of how you can use the messaging capability of the Abaqus
Scripting Interface. The callback function will intercept all messages from Abaqus/Standard,
Abaqus/Explicit, or Abaqus/CFD and print the messages in the Abaqus/CAE command line interface.
Use the following command to retrieve the example script:

abaqus fetch job=simpleMonitor

To execute the script, do the following:

• From the Abaqus/CAE command line interface type from simpleMonitor import
printMessages

• Submit an analysis job as usual.
• To start printing the messages, type printMessages(ON) from the Abaqus/CAE command line
interface.

• To stop printing the messages, type printMessages(OFF) from the Abaqus/CAE command
line interface.

"""
simpleMonitor.py

Print all messages issued during an Abaqus;
analysis to the Abaqus/CAE command line interface
"""

from abaqus import *
from abaqusConstants import *
from jobMessage import ANY_JOB, ANY_MESSAGE_TYPE

#~~~
def simpleCB(jobName, messageType, data, userData):

"""

6–30

Abaqus ID:
Printed on:

INTERACTING WITH Abaqus/Standard, Abaqus/Explicit, AND Abaqus/CFD

This callback prints out all the
members of the data objects
"""

format = '%-18s %-18s %s'

print 'Message type: %s'%(messageType)
print
print 'data members:'
print format%('member', 'type', 'value')

members = dir(data)
for member in members:

memberValue = getattr(data, member)
memberType = type(memberValue).__name__
print format%(member, memberType, memberValue)

#~~~
def printMessages(start=ON):

"""
Switch message printing ON or OFF
"""

if start:
monitorManager.addMessageCallback(ANY_JOB,

ANY_MESSAGE_TYPE, simpleCB, None)
else:

monitorManager.removeMessageCallback(ANY_JOB,
ANY_MESSAGE_TYPE, simpleCB, None)

6.8.2 Waiting for a job to complete

You can use the Job object’s waitForCompletion method to synchronize your script with a job that
has been submitted. If you call the waitForCompletion method after you submit a job, the script
waits until the analysis is complete before continuing. When the script continues, you should check the
status of the job to ensure that the job completed successfully and did not abort. For example, the script
described in “Reproducing the cantilever beam tutorial,” Section 8.1, uses waitForCompletion to
ensure that the analysis job has finished executing successfully before the script opens the resulting output
database and displays a contour plot of the results.

6–31

Abaqus ID:
Printed on:

INTERACTING WITH Abaqus/Standard, Abaqus/Explicit, AND Abaqus/CFD

In the following example, the script submits myJob1 and waits for it to complete before submitting
myJob2.

myJob1 = mdb.Job(name='Job-1')
myJob2 = mdb.Job(name='Job-2')
myJob1.submit()
myJob1.waitForCompletion()
myJob2.submit()
myJob2.waitForCompletion()

If you submit more than one job and then issue a waitForCompletion statement, Abaqus waits until
the job associated with the waitForCompletion statement is complete before checking the status of
the second job. If the second job has already completed, the waitForCompletion method returns
immediately. In the following example the script will not check the status of myJob2 until myJob1 has
completed.

myJob1 = mdb.Job(name='Job-1')
myJob2 = mdb.Job(name='Job-2')
myJob1.submit()
myJob2.submit()
myJob1.waitForCompletion()
myJob2.waitForCompletion()

6.8.3 An example of a callback function
The following section describes how you can use a callback function as an alternative to the
waitForCompletion method described in “Waiting for a job to complete,” Section 6.8.2. The
example uses messaging commands to synchronize a script with an Abaqus/Standard, Abaqus/Explicit,
or Abaqus/CFD analysis. Messaging commands set up a callback function that monitors messages
from Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD. When the desired message is received, the
callback function executes.

The example uses a callback function that responds to all messages from Abaqus/Standard,
Abaqus/Explicit, and Abaqus/CFD. The function decides what action to take based on the messages
received from a job called Deform. If the message indicates that the analysis job is complete, the
function opens the output database created by the job and displays a default contour plot.

#~~
Define the callback function

from abaqus import *
from abaqusConstants import *

import visualization

6–32

Abaqus ID:
Printed on:

USING Abaqus SCRIPTING INTERFACE COMMANDS IN YOUR ENVIRONMENT FILE

def onMessage(jobName, messageType, data, viewport):
if ((messageType==ABORTED) or (messageType==ERROR)):

print 'Solver problem; stop execution of callback function'
elif (messageType==JOB_COMPLETED):

odb = visualization.openOdb(path=jobName + '.odb')
viewport.setValues(displayedObject=odb)
viewport.odbDisplay.display.setValues(plotState=CONTOURS_ON_DEF)

viewport.odbDisplay.commonOptions.setValues(renderStyle=FILLED)

The following statements show how the example script can be modified to use the callback function.
After the first statement is executed, the callback function responds to all messages from the job named
Deform. The final two statements create the job and submit it for analysis; the example script has now
finished executing. When the job is complete, the callback function opens the resulting output database
and displays a contour plot.

...
myJobName = 'Deform'
monitorManager.addMessageCallback(jobName=myJobName,

messageType=ANY_MESSAGE_TYPE, callback=onMessage,
userData=myViewport)

myJob = mdb.Job(name=myJobName, model='Beam',
description=jobDescription)

myJob.submit()
End of example script.

You can use the removeMessageCallback method at the end of the callback function to
remove it from the system. The arguments to the removeMessageCallback method must be
identical to the arguments to the corresponding addMessageCallback command that set up the
callback function.

6.9 Using Abaqus Scripting Interface commands in your environment
file

The Abaqus environment file is read by Abaqus/CAE when you start a session. The environment file
can contain Abaqus Scripting Interface commands. The following is an example environment file:

scratch = 'c:/temp'
memory = 256mb

def onCaeGraphicsStartup():

6–33

Abaqus ID:
Printed on:

USING Abaqus SCRIPTING INTERFACE COMMANDS IN YOUR ENVIRONMENT FILE

Graphics preferences
#
session.defaultGraphicsOptions.setValues(

displayLists=OFF, dragMode=AS_IS)

def onCaeStartup():

Print preferences
#
session.printOptions.setValues(vpDecorations=OFF,

vpBackground=OFF, rendition=COLOR,
printCommand='lpr')

session.psOptions.setValues(date=OFF)

Job preferences
#
def setJobPreferences(module, userData):

import job
session.Queue(name='long', hostName='server',

queueName='large', directory='/tmp')
addImportCallback('job', setJobPreferences)

Visualization preferences
#
def setVisPreferences(module, userData):

import visualization
session.defaultOdbDisplay.contourOptions.setValues(

renderStyle=SHADED, visibleEdges=EXTERIOR,
contourStyle=CONTINUOUS)

addImportCallback('visualization', setVisPreferences)

The addImportCallback statement instructs Abaqus to call a function when the user first
imports a module. In this example Abaqus calls the setJobPreferences function when the user
first enters the Job module, and Abaqus calls the setVisPreferences function when the user first
enters the Visualization module. The setJobPreferences function creates a queue on a remote
host. The setVisPreferences function sets default options for contour plots.

The example environment file uses the onCaeStartup() function to control a set of Python
statements that are executed when Abaqus/CAE first starts. The environment file can also contain the
following:

6–34

Abaqus ID:
Printed on:

USING Abaqus SCRIPTING INTERFACE COMMANDS IN YOUR ENVIRONMENT FILE

• The onJobStartup() function controls a set of statements that execute when an analysis job
starts. For example,

def onJobStartup():
import os, shutil
restartDir = savedir + id + '_restart'
if (os.path.exists(restartDir)):

shutil.rmtree(restartDir)

• The onJobCompletion() function controls a set of statements that execute when an analysis
job completes. For example,

def onJobCompletion():
import os
extensions = ('res','stt','mdl','prt','abq','pac')
restartDir = savedir + os.sep + id + '_restart'
if (not os.path.exists(restartDir)):

os.mkdir(restartDir)
for extension in extensions:

fileName = id + '.' + extension
if (os.path.exists(savedir + os.sep + fileName)):

os.rename(savedir + os.sep + fileName,
restartDir + os.sep + fileName)

The following variables are available to the onJobStartup() and onJobCompletion()
functions:

id

The job identifier that was specified as the value of the job option from the command line.

savedir

The path to the directory from which the job was submitted.

scrdir

The path to the scratch directory.

analysisType

The type of analysis to be executed. Possible values are STANDARD and EXPLICIT.

For a list of the variables that are available outside of the onJobStartup() and
onJobCompletion() functions, see “Job variables,” Section 4.1.11 of the Abaqus Installation and
Licensing Guide.

For more information on the environment file, see “Using the Abaqus environment settings,”
Section 3.3.1 of the Abaqus Analysis User’s Guide, and Chapter 4, “Customizing the Abaqus
environment,” of the Abaqus Installation and Licensing Guide.

6–35

Abaqus ID:
Printed on:

Part III: The Abaqus Python development
environment
This section describes theAbaqus Python development environment (PDE). The Abaqus PDE provides a
simple interface that you can use to develop—create, edit, test, and debug—Python scripts. The Abaqus PDE
is primarily intended for use with Abaqus/CAE user interface (GUI) and kernel scripts, including plug-ins,
but you can also use it to work on scripts that function independently from Abaqus/CAE. The following topic
is covered:

• Chapter 7, “Using the Abaqus Python development environment”

Abaqus ID:
Printed on:

AN OVERVIEW OF THE Abaqus PYTHON DEVELOPMENT ENVIRONMENT

7. Using the Abaqus Python development environment

The Abaqus Python development environment (PDE) is an application in which you can create, edit,
test, and debug Python scripts.

7.1 An overview of the Abaqus Python development environment

The Abaqus PDE is a separate application that you can access from within Abaqus/CAE or launch
independently to work on Python scripts. It is intended primarily for use with scripts that use the
Abaqus/CAE graphical user interface (GUI) or kernel commands, including plug-ins, but you can
also use it to work on scripts that are unrelated to Abaqus. The Abaqus PDE also enables you to set
breakpoints to pause script execution at a particular line in any Python script, including an Abaqus
plug-in.

Figure 7–1 shows a .guiLog file in the Abaqus PDE. The script creates an extruded solid
rectangular part named “box1” and was recorded by logging the actions to complete the task in the
Abaqus/CAE user interface.

The PDE controls allow you to complete the following tasks:

• Open .guiLog, .py, and other Python scripts
• Designate an open file or open another file as the main file for testing
• Open recently used files, including modules called by the main file
• Edit scripts
• Reload modules after editing a plug-in
• Record .guiLog files from Abaqus/CAE
• Run scripts that use the Abaqus/CAE user interface, the Abaqus scripting commands, or general
Python commands

• Add (or ignore) breakpoints in a script
• Add a breakpoint in any Python code executed in Abaqus/CAE, such as plug-ins
• Add a delay between executing steps
• Step through scripts (trace the execution), including plug-in modules and custom startup modules
• Change options for recording .guiLog scripts and animating (highlighting) traced files

The following sections contain detailed information about each of the functions in the PDE:

• “Abaqus PDE basics,” Section 7.2
• “Using the Abaqus PDE,” Section 7.3

7–1

Abaqus ID:
Printed on:

Abaqus PDE BASICS

Main windowMessage area

Show/hide
debugger

Break tools

Status, recording,
and playback tools

File tools

Display main file
or guiLog outputExecution

workspace

Main file open

Add delay

GUI command
line interface

Indent/Unindent

Figure 7–1 The Abaqus PDE.

7.2 Abaqus PDE basics

The following sections contain the basic functions of the PDE:

• “Starting the Abaqus Python development environment,” Section 7.2.1
• “Managing files in the Abaqus PDE,” Section 7.2.2
• “Editing files in the Abaqus PDE,” Section 7.2.3
• “Selecting the settings for use with a file,” Section 7.2.4
• “The message area and GUI command line interface,” Section 7.2.5

7–2

Abaqus ID:
Printed on:

Abaqus PDE BASICS

7.2.1 Starting the Abaqus Python development environment

You can choose from several methods to start the Abaqus Python development environment. If you
plan to work on scripts that use the Abaqus/CAE GUI, you should start the Abaqus PDE from within an
Abaqus/CAE session or start it from the command prompt when you start Abaqus/CAE. These startup
methods link the Abaqus PDE to the corresponding Abaqus/CAE session. Alternatively, you can start
the Abaqus PDE independently to save system memory or avoid using an Abaqus license.

Use one of the following methods to start the Abaqus PDE. The first two methods start the Abaqus
PDE with a link to an Abaqus/CAE session. The last method starts the Abaqus PDE independently from
Abaqus/CAE:

• In Abaqus/CAE, select File→Abaqus PDE from the main menu bar.

• From a system command prompt, enter

abaqus cae -pde

where abaqus is the command used to start Abaqus.

Note: Using this method starts Abaqus/CAE without any local user preference settings. Ignoring
user preferences allows you to record and run .guiLog tests using the consistent default startup
settings.

• From a system command prompt, enter

abaqus pde [filenames] [-script filename] [-pde Abaqus/CAE
command line arguments]

where abaqus is the command used to start Abaqus, and filenames are the names, including the
directory paths, of scripts to be opened at startup.

The -script option allows you to enter the name, including the directory path, of a main file
to be opened at startup. The Abaqus PDE will create a new blank script if the named file does not
exist in the specified directory. If the directory does not exist, the Abaqus PDE generates an error
message.

Note: File names and paths specified without the -script option are opened for editing—not as
the main file.

The -pde option is used to specify options for use with Abaqus/CAE if you run a script in the
Abaqus PDE that requires the Abaqus/CAE kernel or user interface. You can also add command
line options for Abaqus/CAE using the Settings menu. For more information, see “Selecting the
settings for use with a file,” Section 7.2.4.

The sections that follow describe how to use the menus and tools within the Abaqus PDE.

7–3

Abaqus ID:
Printed on:

Abaqus PDE BASICS

7.2.2 Managing files in the Abaqus PDE

You can use the File menu and tools to manage files in the Abaqus PDE. You can work with multiple
scripts, but you can test only one script at a time. The file to be tested is called the Main File. The path
and file name of the main file are displayed near the upper left corner of the Abaqus PDE window. You
can open the main file by using the Select Main File or Recent Main Files items in the File menu.
You can also create a new main file or select an open file to be the main file.

Note: When the Set Last Main File on Startup setting is toggled on, the Abaqus PDE automatically
reopens the main file that was open when you closed your last session.

The default file extensions for use with the Abaqus PDE are .py and .guiLog. A .py file
typically designates a standard Python or Abaqus Scripting Interface script, and a .guiLog file is a
specialized Python script that records actions in the Abaqus/CAE GUI.

As you play a main file script, the Abaqus PDE automatically opens any files that contain functions
called by the script, if the files are available in the current path (sys.path). These files are added to
the recently used files list in the File menu. The Abaqus PDE also saves a list of recently used files and
other files (dependent files) called when you run a main file. This list is saved in the current directory as
abaqus_pde.deps.

Figure 7–2 shows the items in the Abaqus PDE File menu.

Figure 7–2 The File menu.

The following options are available from the File menu:

7–4

Abaqus ID:
Printed on:

Abaqus PDE BASICS

New

Create a new file. The Abaqus PDE creates a new main file and displays it in the main window.
The file is created using the default naming convention _abaqus#_.guiLog, where # starts at
1 and is incremented as you create more files in the current directory. You can also click the New

guiLog icon to create a new file.
Abaqus automatically designates the new script as the main file.

Open

Open a script. You can also click the Open file icon to open a script.
If you have not yet opened or created another script, Abaqus automatically makes the first

opened file the main file for testing. Otherwise, the file opened becomes the current file viewed in
the main window, but it is not the main file used for testing.

Tip: You can drag and drop script files from the desktop or from Windows Explorer into
the Abaqus PDE for editing.

You can navigate to the file you want to open by entering its full path, or you can specify a
path using environment variables.

Select Main File

Open a script as the main file for testing. You can also click the Open main file icon to open
a script as the main file.

Make Current Main

Designate the current script in the main window as the main file for testing.

Save

Save changes to the current file. You can also click Save to save the current file.

Save As

Save the current file with a new name.

Reload Modules

Reload user interface modules to capture any changes that you made since they were first loaded.

You can also click Reload Modules to reload the user interface modules. The Abaqus PDE
reloads user interface modules in the Abaqus/CAE GUI and Abaqus/CAE kernel processes unless
the current setting for the Run Script In option is “local,” in which case any changed modules are
reloaded in the local PDE process.

7–5

Abaqus ID:
Printed on:

Abaqus PDE BASICS

Close File

Close the current file.

Filename.py

The name and file extension of the current main file, if one is selected.
Clicking here shows a list of dependent files that were found when the main file was run. If

the current main file has not been run in the Abaqus PDE, this list will be empty.

Recent Main Files

A list of the files that you have opened as the main file for testing. Recent Files from previous
sessions will be read from the abaqus_pde.deps file, if it exists in the current directory.

Recent Traced Files

A list of files that were opened by the Abaqus PDE to trace a function called by one of the main files
that you tested. Recent Files from previous sessions will be read from the abaqus_pde.deps
file, if it exists in the current directory.

Recent Files

A list of all files that you have opened, regardless of whether you opened them to view and edit
them or opened them as the main file for testing. Recent Files from previous sessions will be read
from the abaqus_pde.deps file, if it exists in the current directory.

The recently used files lists are stored in the abaqus_pde.deps file in the directory from which you
start the current Abaqus PDE session. If you start an Abaqus PDE session from another location, the
lists contain only the files that you used the last time you opened a session in that directory. If you have
not previously used the Abaqus PDE in the current directory, a new set of recently used files is recorded
as you work.

7.2.3 Editing files in the Abaqus PDE
You can use the Edit menu to edit scripts in the Abaqus PDE. The Edit menu contains common editing
tools, including Undo, Redo, Copy, Cut, Paste, Find, and Replace. It also contains the following
tools for editing scripts:

• Indent Region >

• Unindent Region <

• Comment Region ##

• Uncomment Region

To use these tools, highlight one or more lines of code in the main window and select the desired option
from the Edit menu. The Edit menu also contains a keyboard shortcut for each of the editing tools.

7–6

Abaqus ID:
Printed on:

Abaqus PDE BASICS

7.2.4 Selecting the settings for use with a file

Use the Settings menu and tools to change some of the options in the Abaqus PDE.
Figure 7–3 shows the items and default selections in the Abaqus PDE Settings menu.

Figure 7–3 The Settings menu.

The following items are available from the Settings menu:

Recording Options

Set the display of the triad, state block, and title block and whether the legend background matches
the viewport. These options affect the commands recorded for an output database.

Allow Editing of Files

Toggle between edit and read-only modes for all files. Editing is allowed by default.

Show File Line Numbers

Display line numbers for any open files on the left side of the main window. Line numbers are
displayed by default.

Ignore Breakpoints During Play

Run the main file continuously, skipping any breakpoints, until it completes or stops for an error.
Breaks are not skipped by default. You can also skip breakpoints by toggling on Ignore breaks,
located in the toolbar above the main window.

7–7

Abaqus ID:
Printed on:

Abaqus PDE BASICS

Allow Pause in Play

Pause a running file by clicking the Pause button. Pause is allowed by default. Allowing pause
also causes the main file to run in the debugger. (For more information, see “Using the debugger,”
Section 7.3.3.)

Set Last Main File on Startup

Upon startup, automatically reopen the main file that was open when you last closed the Abaqus
PDE.

Run Script In

Select whether the main file is run in the Abaqus/CAE GUI, the Abaqus/CAE kernel, or run locally.
By default, .guiLog files are run in the GUI, and .py and other file types are run in the kernel.
You can also set this option using the GUI, Kernel, and Local radio buttons located above the main
window.

If the Abaqus PDE was opened without Abaqus/CAE and you run a script with the GUI or
Kernel process, the Abaqus PDE will start Abaqus/CAE to run the script.

.py Default to Kernel

Set .py files to run in the Abaqus/CAE kernel. This option is selected by default. If .py Default
to Kernel is not selected, .py files are run locally. Select the GUI or Local radio button to run a
Python script in one of these modes without changing the default behavior.

Line Animation

Highlight the line currently being executed in the main window. The following animation settings
are available:

• No animation.
• Animate main file (default). Highlights only the statements in the main function or method.
Functions called from the main script are not highlighted.

• Animate main file functions. Highlights the main script statements and the statements in
functions that are defined within the main file.

• Animate all files. Highlights the main script statements and statements within all functions for
which the source code is available.

Python Code

Control the appearance and editing behavior of Python scripts in the Abaqus PDE main window.

Syntax Coloring

Display the code using various font colors according to its purpose. This option is selected by
default.

You can view or change the color selections with the Choose Syntax Colors option.

7–8

Abaqus ID:
Printed on:

Abaqus PDE BASICS

Python Editing

Edit scripts with Python formatting, such as indentation, included automatically. This option
is selected by default.

Choose Syntax Colors

Opens the PDE Syntax Colors dialog box in which you can view or change the color
selections for editing scripts. Click Reset Defaults to restore the default colors.

CAE Command Line Extra Args...

Enter extra arguments for use when Abaqus/CAE is launched from the Abaqus PDE.

Auto Trace in CAE

Automatically trace code in GUI and kernel processes of Abaqus/CAE. The script will be traced
until it returns from the frame in which the trace started. The trace will therefore stop when the
function returns or the end of the script is reached. This option is selected by default.

7.2.5 The message area and GUI command line interface

The message area and the GUI command line interface share the space at the bottom of the Abaqus PDE,
similar to the kernel command line interface in Abaqus/CAE. (For more information, see “Components
of the main window,” Section 2.2.1 of the Abaqus/CAE User’s Guide.) The message area is displayed
by default. It displays messages and warnings as you run scripts in the Abaqus PDE.

The GUI command line interface is hidden by default, but it uses the same space occupied by the

message area. Click in the bottom left corner of the Abaqus PDE main window to switch from the
message area to the GUI command line interface. The GUI and kernel processes in Abaqus/CAE run
separately, each using its own Python interpreter. You can use the GUI command line interface to type
Python commands and to evaluate mathematical expressions using the Python interpreter that is built into
the Abaqus/CAE GUI. You can use the kernel command line interface in Abaqus/CAE for similar tasks.
Each command line interface includes primary (>>>) and secondary (...) prompts to indicate when you
must indent commands to comply with Python syntax. After you use the GUI command line interface,

click to display the message area.

If new messages are generated in the message area while the GUI command line interface is active,
the background around the message area icon turns red. The background reverts to its normal color when
you display the message area.

7–9

Abaqus ID:
Printed on:

USING THE Abaqus PDE

7.3 Using the Abaqus PDE

The following sections contain detailed information that you can use to create and work with files in the
Abaqus PDE:

• “Creating .guiLog files,” Section 7.3.1
• “Running a script,” Section 7.3.2
• “Using the debugger,” Section 7.3.3
• “Using breakpoints,” Section 7.3.4
• “Using the Abaqus PDE with plug-ins,” Section 7.3.5
• “Using the Abaqus PDE with custom applications,” Section 7.3.6

7.3.1 Creating .guiLog files
The Abaqus PDE is designed to work any type of Python files, including .guiLog files. A .guiLog
is a Python script that records actions in the Abaqus/CAE GUI. When you create a .guiLog, it records
every mouse click, dialog box entry, and menu, tool, or viewport selection.

To record actions from Abaqus/CAE, the Abaqus PDE session must be associated with a
Abaqus/CAE session. The Abaqus PDE and Abaqus/CAE sessions are associated if you started them
together from a command prompt or if you started the Abaqus PDE by selecting File→Abaqus PDE
in Abaqus/CAE. For more information on starting the Abaqus PDE, see “Starting the Abaqus Python
development environment,” Section 7.2.1.

To record a .guiLog from Abaqus/CAE:

1. From the main menu bar in the Abaqus PDE, select File→New to create a new empty file in the
main window.

Tip: You can also click the New guiLog icon to create a new .guiLog file.

2. Click the Start Recording icon to begin recording actions from Abaqus/CAE.

Abaqus writes the following two lines to begin the file:

from abaqusTester import *
import abaqusGui

3. Complete all the desired actions in the Abaqus/CAE session to record them in the .guiLog file.

Note: When you record .guiLog files, do not use mouse button 2 to close the dialog box for a
procedure. Instead, use the buttons in the dialog box to close it. Using mouse button 2 adds multiple

7–10

Abaqus ID:
Printed on:

USING THE Abaqus PDE

dialog box closing commands to the recorded .guiLog file. Since only one command is needed
to close the dialog, the extra commands will result in an error when the recorded script is played.

4. Click the Stop Recording icon to stop recording.

5. Use standard text editing techniques to edit the file in the main window. Additional editing tools
are available in the Edit menu (for more information, see “Editing files in the Abaqus PDE,”
Section 7.2.3.)

6. To add more recorded commands to the file, position the cursor at the desired location or click End

of Main File to position the cursor at the end of the file, then repeat Step 2 through Step 4.

7. Select File→Save to save the file or File→Save As to save the file with a new name; new files
automatically use Save As.

7.3.2 Running a script
The Abaqus PDE runs scripts using one of three processes—GUI, kernel, or local. By default, .guiLog
files are run in the Abaqus/CAE GUI process. If the Abaqus PDE was opened from within Abaqus/CAE,
.py files and all other file types are run in the Abaqus/CAE kernel process by default. If the Abaqus PDE
was opened without Abaqus/CAE, .py files are run in the local process by default. The local process
runs the script without Abaqus/CAE, using Python in the local (PDE) process. You can change the
process by selecting Settings→Run Script In and choosing the desired process, or by clicking theGUI,
Kernel, or Local radio buttons located above the main window. If the Abaqus PDE was opened without
Abaqus/CAE and you run a script with the GUI or Kernel process, Abaqus PDE will start Abaqus/CAE
to run the script.

To run the main file, click Play above the main window. The Abaqus PDE runs the main file
until it completes, encounters an error, or reaches a breakpoint. As the script runs, the current line is
highlighted according to the Line Animation settings.

Use the other buttons—Next Line , Stop , Go to Start , and Go to End —to
execute the main file one line at a time, stop running the file, or reposition the cursor at the beginning or
end of the file, respectively.

As you run a script, you might want to specify a breakpoint to pause script execution at a particular
line. For more information about breakpoints, see “Using breakpoints,” Section 7.3.4

7.3.3 Using the debugger
You can use the debugger in the Abaqus PDE to troubleshoot your scripts. To open the debugger, select

Window→Debugger or click Start debugger . If you have a script paused in the main window,

7–11

Abaqus ID:
Printed on:

USING THE Abaqus PDE

the debugger opens at the current position of the test. If you do not have a paused script, the debugger
automatically begins running the main file and positions the cursor at the start of the script.

The debugger consists of a call stack area, action buttons, and the debugger command line interface
(CLI) window, as shown in Figure 7–4. The debugger is positioned between the Abaqus PDE main
window and the message area.

Message area

Call Stack area Debug buttons

GUI Command
Line Interface

Watch variable window

Debugger Command
Line Interface (CLI)

Figure 7–4 The Abaqus PDE debugger.

The debugger uses a custom Python module named atxPdb, based on the Python pdbmodule. You can
enter Pdb commands in the debugger CLI; you can also enter any Python statements in the debugger
CLI. Python statements are executed in the same process—GUI, kernel, or local—that is running the
current script (for more information, see “Running a script,” Section 7.3.2).

Note: If you enter a command in the debugger CLI and it does not seem to work, it may be conflicting
with a Pdb command.

The call stack area shows the commands that are currently being executed.

7–12

Abaqus ID:
Printed on:

USING THE Abaqus PDE

The debugger contains a tool to watch variables as scripts are executed. To add a variable to the
watch list, click mouse button 3 over the variable name in the Abaqus PDE main window and select Add
Watch: variable name from the menu that appears. The Abaqus PDE adds the variable to the watch
list, indicating the namespace that the variable is defined within, the variable name, the type of data the
variable can store, the current value, and the file and line where the variable is located. When you execute
or step through the script, the variable information is updated as needed. You can also activate the watch
list tool after starting the debugger by selecting Show Watch from the action buttons below the call
stack area or by selectingWindow→Debug Windows→Watch List. Abaqus displays theWatch List
area below the debugger or below the main window if the debugger is not open.

You can also customize the following aspects of variable display in the Watch List:

• You can switch a variable’s display format between repr and str formats. The repr() function
returns a string that is better suited to being read by the Python interpreter, while thestr() function
returns a string better suited to printing. For more information about the built-in Python functions
repr() and str(), refer to the official Python web site (www.python.org).

To toggle between these settings, click mouse button 3 on a watch variable row and select
Display repr (not str) value of variable name or Display str (not repr) value of variable
name from the list that appears. If the variable is a local variable and the program is not accessing
that section of code, the variable value will be set to “not evaluated.” Variable values are also set to
“not evaluated” if the program is not running.

• You can prompt the Abaqus PDE to pause when the program reaches a line in which the value of
a selected watch variable has changed. To toggle on the “stop on change” option for a particular
watch variable, click mouse button 3 on the variable’s line and select Stop on change to variable
name from the list that appears. When this option is selected, Abaqus PDE stops at the line after
the change.

• You can remove any watch variables from the debugger by clicking mouse button 3 on the variable’s
line and selecting Delete watch var variable name from the list that appears.

7.3.4 Using breakpoints

Breakpoints are points where script execution pauses until you select Play or Next Line above
the main window. You can add them at any line in a script. Breakpoints also allow you to pause plug-ins
and custom applications so you can trace their execution.

To add a breakpoint, position the cursor on the desired line of the script, click mouse button 3, and
select Add Breakpoint. Use the same process, selecting Remove Breakpoint, to remove breakpoints.

You can also add and remove breakpoints using the breakpoint tool located above the main window
or the [F9] key.

Breakpoints are indicated by an asterisk to the right of the line number in the Abaqus PDE. If syntax
colors are active, the line number, asterisk, and the line of code are colored using the current breakpoint
color selection (for more information, see “Selecting the settings for use with a file,” Section 7.2.4).

7–13

Abaqus ID:
Printed on:

USING THE Abaqus PDE

You can review breakpoints in all open files by selecting Window→Debug
Windows→Breakpoints List. The Abaqus PDE Breakpoints dialog box lists the file path, name,
and each line number where a breakpoint is located. You can double-click the paths to position the
cursor in the main window at the selected breakpoint.

7.3.5 Using the Abaqus PDE with plug-ins
The functions and tools in the Abaqus PDE work the same way for plug-ins as they do for other scripts.
However, since plug-ins are launched within Abaqus/CAE, you cannot load and run them as a main file
like you can with other scripts. Instead, you add breakpoints, then run the plug-ins as usual.

If the plug-in contains both kernel and GUI functions, you must trace them separately. Tracing the
kernel andGUI functions separately prevents problems that can occur in Abaqus/CAE as the Abaqus PDE
attempts to switch between kernel and GUI modes while the code is running. Separating the functions
also provides a logical approach to locating problems in the kernel code versus ones in the user interface.

After you save the changes to your plug-in, you can trace its execution.

To trace the execution of a plug-in:

1. Open the file that you want to debug.

2. Position the cursor where you want to add a breakpoint. Click mouse button 3, and select Add
Breakpoint. (For more information, see “Using breakpoints,” Section 7.3.4.)

3. Start the plug-in from within Abaqus/CAE.

The plug-in code appears in the Abaqus PDE window, stopped at the breakpoint or at the line
immediately following the start trace statement, if you added one.

4. Use the Abaqus PDE controls and options described in the previous sections to step through the
execution of the plug-in.

7.3.6 Using the Abaqus PDE with custom applications
Custom applications are scripts created to modify or add functionality to Abaqus/CAE. They
typically use a combination of the Abaqus Scripting Interface commands and the Abaqus GUI toolkit
commands to extend the user interface and the underlying kernel commands. Custom applications are
launched concurrent with the start of an Abaqus/CAE session, and they are integrated into the existing
functionality.

If the application contains both kernel and GUI functions, you must trace them separately. Tracing
the kernel and GUI functions separately prevents problems that can occur in Abaqus/CAE as the Abaqus
PDE attempts to switch between kernel and GUI modes while the code is running. Separating the
functions also provides a logical approach to locating problems in the kernel code versus ones in the
GUI code.

7–14

Abaqus ID:
Printed on:

USING THE Abaqus PDE

To trace the execution of custom application startup code:

1. Enter the following at a command prompt to start the Abaqus PDE and the custom application:

abaqus pde -pde [args]

where abaqus is the command you use to start Abaqus and args are the arguments required to start
the custom application. For example, if you enter abaqus cae -custom xxx.py to start
Abaqus/CAE and your application, enter abaqus pde -pde -custom xxx.py.

Note: You cannot start the custom application and launch the Abaqus PDE from within
Abaqus/CAE since the initial startup processes would already be complete.

2. Open the file that you want to debug.

3. Position the cursor where you want to add a breakpoint. Click mouse button 3, and select Add
Breakpoint. (For more information, see “Using breakpoints,” Section 7.3.4.)

4. Click Start CAE at the top right of the Abaqus PDE to start Abaqus/CAE with the custom startup
commands.

5. The application code appears in the Abaqus PDE window, stopped at a breakpoint.

6. Use the Abaqus PDE controls and options described in the previous sections to step through the
execution of the custom application.

7–15

Abaqus ID:
Printed on:

Part IV: Putting it all together: examples
The section provides examples that illustrate how you can combine Abaqus Scripting Interface commands
and Python statements to create your own scripts. You can use the scripts to create Abaqus/CAE models,
submit jobs for analysis, and view the results. The following topic is covered:

• Chapter 8, “Abaqus Scripting Interface examples”
For examples of scripts that read and write from an output database, see “Example scripts that access

data from an output database,” Section 9.10.

Abaqus ID:
Printed on:

Abaqus SCRIPTING INTERFACE EXAMPLES

8. Abaqus Scripting Interface examples

The Abaqus/CAE example scripts in this chapter illustrate the following:

• How you can use commands from the Abaqus Scripting Interface to create a simple model, submit
it for analysis, and view the results. “Reproducing the cantilever beam tutorial,” Section 8.1,
uses Abaqus Scripting Interface commands to reproduce the cantilever beam tutorial described in
Appendix B, “Creating and Analyzing a Simple Model in Abaqus/CAE,” of Getting Started with
Abaqus/CAE.

• How you can use the Abaqus Scripting Interface to control the output from the Visualization module
in Abaqus/CAE (Abaqus/Viewer).

– “Opening the tutorial output database,” Section 8.2.1, explains how to use abaqus fetch to
retrieve the Abaqus/CAE tutorial output database.

– “Opening an output database and displaying a contour plot,” Section 8.2.2, explains how to
open the tutorial output database, display a contour plot, and print the resulting viewport to a
file.

– “Printing a contour plot at the end of each step,” Section 8.2.3, explains how to open the tutorial
output database, customize the legend, display a contour plot at the end of each step, and print
the resulting viewports to a file.

• How you can introduce more complex programming techniques into your Abaqus Scripting
Interface scripts. “Investigating the skew sensitivity of shell elements,” Section 8.3, reproduces the
problem found in “Skew sensitivity of shell elements,” Section 2.3.4 of the Abaqus Benchmarks
Guide. You use Abaqus/CAE to create the model, and you use Abaqus Scripting Interface
commands to parameterize an evaluation of the model by changing its geometry and element type.
The example investigates the sensitivity of the shell elements in Abaqus to skew distortion when
they are used as thin plates.

• How you can use functions available in the caePrefsAccess module to edit the display
preferences and GUI settings in the abaqus_2016.gpr file. “Editing display preferences and
GUI settings,” Section 8.4, describes how to query for and set several default display and GUI
behaviors in Abaqus/CAE.

The example scripts from this guide can be copied to the user’s working directory by using the
Abaqus fetch utility:

abaqus fetch job=scriptName

where scriptName.py is the name of the script (see “Fetching sample input files,” Section 3.2.17 of the
Abaqus Analysis User’s Guide).

8–1

Abaqus ID:
Printed on:

REPRODUCING THE CANTILEVER BEAM TUTORIAL

8.1 Reproducing the cantilever beam tutorial

This example uses Abaqus Scripting Interface commands to reproduce the cantilever beam tutorial
described in Appendix B, “Creating and Analyzing a Simple Model in Abaqus/CAE,” of Getting Started
with Abaqus/CAE. Figure 8–1 illustrates the model that you will create and analyze.

20 mm

25 mm
200 mm

0.5 MPa

Figure 8–1 A loaded cantilever beam.

The following topics are covered:

• “Running the example,” Section 8.1.1
• “The cantilever beam example script,” Section 8.1.2

8.1.1 Running the example
Use the following command to retrieve the output database that is read by the scripts:

abaqus fetch job=beamExample

To run the script, do the following:

1. Start Abaqus/CAE from a directory in which you have write permission by typing abaqus cae.

2. From the startup screen, select Run Script.

3. From the Run Script dialog box that appears, enter the path given above and select the file
containing the script.

4. Click OK to run the script.

Note: If Abaqus/CAE is already running, you can run the script by selecting File→Run Script from
the main menu bar.

8–2

Abaqus ID:
Printed on:

REPRODUCING THE CANTILEVER BEAM TUTORIAL

8.1.2 The cantilever beam example script

The first line of the script, from abaqus import *, imports the Mdb and Session objects.
The current viewport is session.viewports[’Viewport: 1’], and the current model is
mdb.models[’Model-1’]. Both of these objects are available to the script after you import the
abaqus module. The second line of the script, from abaqusConstants import *, imports
the Symbolic Constants defined in the Abaqus Scripting Interface. The script then creates a new model
that will contain the cantilever beam example and creates a new viewport in which to display the
model and the results of the analysis. For a description of the commands used in this section, see the
appropriate sections in the Abaqus Scripting Reference Guide.

The script then imports the Partmodule. Most of the sections in this example begin with importing
the appropriate module, which illustrates how a script can import a module at any time to extend or
augment the object model. However, the Abaqus Scripting Interface has a convention that all the required
modules are imported at the start of a script; and that convention is followed in other example scripts in
this guide.

"""
beamExample.py

Reproduce the cantilever beam example from the
Appendix of the Getting Started with
Abaqus: Interactive Edition Manual.
"""

from abaqus import *
from abaqusConstants import *
backwardCompatibility.setValues(includeDeprecated=True,

reportDeprecated=False)

Create a model.

myModel = mdb.Model(name='Beam')

Create a new viewport in which to display the model
and the results of the analysis.

myViewport = session.Viewport(name='Cantilever Beam Example',
origin=(20, 20), width=150, height=120)

#---

8–3

Abaqus ID:
Printed on:

REPRODUCING THE CANTILEVER BEAM TUTORIAL

import part

Create a sketch for the base feature.

mySketch = myModel.ConstrainedSketch(name='beamProfile',
sheetSize=250.)

Create the rectangle.

mySketch.rectangle(point1=(-100,10), point2=(100,-10))

Create a three-dimensional, deformable part.

myBeam = myModel.Part(name='Beam', dimensionality=THREE_D,
type=DEFORMABLE_BODY)

Create the part's base feature by extruding the sketch
through a distance of 25.0.

myBeam.BaseSolidExtrude(sketch=mySketch, depth=25.0)

#---

import material

Create a material.

mySteel = myModel.Material(name='Steel')

Create the elastic properties: youngsModulus is 209.E3
and poissonsRatio is 0.3

elasticProperties = (209.E3, 0.3)
mySteel.Elastic(table=(elasticProperties,))

#---

import section

Create the solid section.

8–4

Abaqus ID:
Printed on:

REPRODUCING THE CANTILEVER BEAM TUTORIAL

mySection = myModel.HomogeneousSolidSection(name='beamSection',
material='Steel', thickness=1.0)

Assign the section to the region. The region refers
to the single cell in this model.

region = (myBeam.cells,)
myBeam.SectionAssignment(region=region,

sectionName='beamSection')

#---

import assembly

Create a part instance.

myAssembly = myModel.rootAssembly
myInstance = myAssembly.Instance(name='beamInstance',

part=myBeam, dependent=OFF)

#---

import step

Create a step. The time period of the static step is 1.0,
and the initial incrementation is 0.1; the step is created
after the initial step.

myModel.StaticStep(name='beamLoad', previous='Initial',
timePeriod=1.0, initialInc=0.1,
description='Load the top of the beam.')

#---

import load

Find the end face using coordinates.

endFaceCenter = (-100,0,12.5)
endFace = myInstance.faces.findAt((endFaceCenter,))

8–5

Abaqus ID:
Printed on:

REPRODUCING THE CANTILEVER BEAM TUTORIAL

Create a boundary condition that encastres one end
of the beam.

endRegion = (endFace,)
myModel.EncastreBC(name='Fixed',createStepName='beamLoad',

region=endRegion)

Find the top face using coordinates.

topFaceCenter = (0,10,12.5)
topFace = myInstance.faces.findAt((topFaceCenter,))

Create a pressure load on the top face of the beam.

topSurface = ((topFace, SIDE1),)
myModel.Pressure(name='Pressure', createStepName='beamLoad',

region=topSurface, magnitude=0.5)

#---

import mesh

Assign an element type to the part instance.

region = (myInstance.cells,)
elemType = mesh.ElemType(elemCode=C3D8I, elemLibrary=STANDARD)
myAssembly.setElementType(regions=region, elemTypes=(elemType,))

Seed the part instance.

myAssembly.seedPartInstance(regions=(myInstance,), size=10.0)

Mesh the part instance.

myAssembly.generateMesh(regions=(myInstance,))

Display the meshed beam.

myViewport.assemblyDisplay.setValues(mesh=ON)
myViewport.assemblyDisplay.meshOptions.setValues(meshTechnique=ON)

8–6

Abaqus ID:
Printed on:

GENERATING A CUSTOMIZED PLOT

myViewport.setValues(displayedObject=myAssembly)

#---

import job

Create an analysis job for the model and submit it.

jobName = 'beam_tutorial'
myJob = mdb.Job(name=jobName, model='Beam',

description='Cantilever beam tutorial')

Wait for the job to complete.

myJob.submit()
myJob.waitForCompletion()

#---

import visualization

Open the output database and display a
default contour plot.

myOdb = visualization.openOdb(path=jobName + '.odb')
myViewport.setValues(displayedObject=myOdb)
myViewport.odbDisplay.display.setValues(plotState=CONTOURS_ON_DEF)

myViewport.odbDisplay.commonOptions.setValues(renderStyle=FILLED)

8.2 Generating a customized plot

The following section provides examples of Abaqus Scripting Interface scripts that open an output
database and generate a customized plot. In effect, these scripts reproduce the functionality of the
Visualization module in Abaqus/CAE. The following examples are provided:

• “Opening the tutorial output database,” Section 8.2.1
• “Opening an output database and displaying a contour plot,” Section 8.2.2
• “Printing a contour plot at the end of each step,” Section 8.2.3

8–7

Abaqus ID:
Printed on:

GENERATING A CUSTOMIZED PLOT

8.2.1 Opening the tutorial output database
Each of the following example scripts opens the output database used by the Visualization module tutorial
in Getting Started with Abaqus/CAE. Use the following command to retrieve the output database that is
read by the scripts:

abaqus fetch job=viewer_tutorial

8.2.2 Opening an output database and displaying a contour plot
The following example of a script containing Abaqus Scripting Interface commands uses the output
database used by Appendix D, “Viewing the Output from Your Analysis,” of Getting Started with
Abaqus/CAE.

Use the following command to retrieve the example script:

abaqus fetch job=viewerOpenOdbAndContour

The script does the following:

• Creates a viewport, and makes it the current viewport.
• Opens an output database.
• Displays a contour plot.
• Displays the model in the first frame of the third step.
• Sets the number of contour intervals and the contour limits.
• Prints a color image of the viewport to a .png file.

"""
viewerOpenOdbAndContour.py

Print a contour plot to a local PNG-format file.
"""

from abaqus import *
from abaqusConstants import *
import visualization

Create a new Viewport for this example.

myViewport=session.Viewport(name='Print a contour plot',
origin=(10, 10), width=200, height=100)

Open the output database and associate it

8–8

Abaqus ID:
Printed on:

GENERATING A CUSTOMIZED PLOT

with the new viewport.

odbPath = "viewer_tutorial.odb"
myOdb = visualization.openOdb(path=odbPath)

myViewport.setValues(displayedObject=myOdb)

Display a contour plot of the output database.

myViewport.odbDisplay.display.setValues(plotState=(CONTOURS_ON_DEF,))

Change to the first frame of the third step.
Remember that indices in Python begin with zero:
The index of the first frame is 0.
The index of the third step is 2.

myViewport.odbDisplay.setFrame(step=2, frame=0)

Change the number of contour intervals to 10
starting at 0.0 and ending at 0.10.

myViewport.odbDisplay.contourOptions.setValues(numIntervals=10,
maxAutoCompute=OFF, maxValue=0.10,
minAutoCompute=OFF, minValue=0.0,)

Generate color output.
Do not print the viewport decorations or the black background.

session.printOptions.setValues(rendition=COLOR,
vpDecorations=OFF, vpBackground=OFF)

Print the viewport to a local PNG-format file.

session.printToFile(fileName='contourPlot', format=PNG,
canvasObjects=(myViewport,))

8–9

Abaqus ID:
Printed on:

GENERATING A CUSTOMIZED PLOT

8.2.3 Printing a contour plot at the end of each step
The following example script demonstrates how to produce and print a contour plot at the last frame of
every step within an output database file. The example sets the appropriate contour limits so that all plots
can be viewed within a fixed range.

Use the following command to retrieve the example script:

abaqus fetch job=viewerPrintContours

The script does the following:

• Defines the contour limits function.
• Determines the final frame of every step within an output database file.
• Produces a contour plot at the final frame of every step.
• Prints the contour plot to a file.

"""
viewerPrintContours.py

Print a set of contour plots to .png files.
"""

from abaqus import *
from abaqusConstants import *
import visualization

Create a viewport for this example.

myViewport=session.Viewport(name=
'Print contour plot after each step', origin=(10, 10),
width=150, height=100)

Open the output database and associate it with the viewport.
Then set the plot state to CONTOURS_ON_DEF

try:
myOdb = visualization.openOdb(path='viewer_tutorial.odb')

except (AbaqusException), value:
print 'Error:', value

myViewport.setValues(displayedObject=myOdb)

myViewport.odbDisplay.display.setValues(plotState=(CONTOURS_ON_DEF,))

Determine the number of steps in the output database.

8–10

Abaqus ID:
Printed on:

GENERATING A CUSTOMIZED PLOT

mySteps = myOdb.steps
numSteps = len(mySteps)

Set the maximum and minimum limits of the contour legend.

myViewport.odbDisplay.contourOptions.setValues(numIntervals=10,
maxAutoCompute=OFF, maxValue=0.1,
minAutoCompute=OFF, minValue=0.0)

Establish print preferences.

session.printOptions.setValues(vpBackground=OFF)
session.psOptions.setValues(orientation=LANDSCAPE)
myViewport.viewportAnnotationOptions.setValues(

triad=OFF,title=OFF,state=OFF)
myViewport.odbDisplay.basicOptions.setValues(

coordSystemDisplay=OFF,)

For each step, obtain the following:
1) The step key.
2) The number of frames in the step.
3) The increment number of the last frame in the step.
#

for i in range(numSteps):
stepKey = mySteps.keys()[i]
step = mySteps[stepKey]
numFrames = len(step.frames)

Go to the last frame.
Display a contour plot.
Display the step description and the increment number.

myViewport.odbDisplay.setFrame(step=i, frame=numFrames-1)
myViewport.odbDisplay.display.setValues(plotState=(CONTOURS_ON_DEF,))

Remove white space from the step key and use the result
to name the file.

fileName=stepKey.replace(' ','')

Print the viewport to a file.

session.printToFile(fileName, PNG, (myViewport,))

8–11

Abaqus ID:
Printed on:

INVESTIGATING THE SKEW SENSITIVITY OF SHELL ELEMENTS

8.3 Investigating the skew sensitivity of shell elements

In this example you will use Abaqus/CAE to create the model and store the model in a model database.
The script opens the model database and performs a parametric study on the model. The example
illustrates how you can use a combination of Abaqus/CAE and the Abaqus Scripting Interface to analyze
a problem.

This example uses Abaqus Scripting Interface commands to evaluate the sensitivity of the shell
elements in Abaqus to skew distortion when they are used as thin plates. Further details can be found
in “Skew sensitivity of shell elements,” Section 2.3.4 of the Abaqus Benchmarks Guide. The problem
investigates the effects on the accuracy of the bending moment computed at the center of a shell using:

• different shell formulations and
• at different angles.
Figure 8–2 illustrates the basic geometry of the simply supported skew plate with a uniform

distributed load.

1.0 m

x, y, z displacements
constrained on boundary

δ
x

y

1.
0

m

Figure 8–2 A 4 × 4 quadrilateral mesh of the plate.

The plate is loaded by a uniform pressure of 1.0 × 10−6 MPa applied over the entire surface. The edges of
the plate are all simply supported. The analysis is performed for five different values of the skew angle,
: 90°, 80°, 60°, 40°, and 30°. The analysis is performed for two different quadrilateral elements: S4
and S8R.

The example is divided into two scripts. The controlling script, skewExample.py, imports
skewExampleUtils.py. Use the fetch utility to retrieve the scripts:

abaqus fetch job=skewExample
abaqus fetch job=skewExampleUtils

8–12

Abaqus ID:
Printed on:

INVESTIGATING THE SKEW SENSITIVITY OF SHELL ELEMENTS

The following topics are covered:

• “Creating the model to analyze,” Section 8.3.1
• “Changing the skew angle,” Section 8.3.2
• “Using a script to perform a parametric study,” Section 8.3.3

8.3.1 Creating the model to analyze

You should use Abaqus/CAE to create yourmodel and to save the resultingmodel database. Youwill then
use scripting to parameterize your model, submit an analysis job, and operate on the results generated.

Start Abaqus/CAE, and create a model database from the Start Session dialog box. By default,
you are operating on a model named Model-1. The model should include the following:

Part

Create a three-dimensional planar shell part, and name it Plate. Use an approximate size of 5.0.
All sides are 1.0 m long. Delete all perpendicular and vertical constraints, and apply the following
constraints:

• a fixed constraint to the lower-left vertex,
• horizontal constraints to the top and bottom edges (if they are not already defined), and
• parallel constraints to the left and right edges

Material

Create a material, and name it Steel. The Young’s modulus is 30 MPa, and the Poisson’s ratio is
0.3.

Section

Create a homogeneous shell section that refers to the material called Steel. Name the section
Shell. The plate thickness is 0.01 m. The length/thickness ratio is, thus, 100/1 so that the plate is
thin in the sense that transverse shear deformation should not be significant. Assign the section to
the plate.

Assembly

Create the assembly using a single, independent part instance of Plate. Abaqus/CAE names the
part instance Plate-1. Creating an independent part instance means that the mesh is based at the
assembly level.

Step

Create a static step and name it Step-1. Enter Apply pressure for the step Description.
Accept the default time period of 1.0 and the default initial increment of 1.0.

8–13

Abaqus ID:
Printed on:

INVESTIGATING THE SKEW SENSITIVITY OF SHELL ELEMENTS

Output database requests

Edit the default output database request for field output and select only U, Translations and
rotations, and SF, Section forces and moments, for the whole model after every increment.
Delete all requests for history output.

Boundary condition

Create a displacement boundary condition, and name it Pinned. The boundary condition pins the
exterior edges of the plate.

Load

Create a pressure load, and name it Pressure. Apply the load to the face of the plate. Accept the
default side of the plate and use a magnitude of 1.0. This positive pressure will result in a negative
displacement in the 3-direction.

Set

Partition the plate into quarters by sketching lines between the midpoints of the four edges. Create
a set that contains the vertex at the center of the plate, and name the set CENTER.

Mesh

Create a 4 × 4 swept mesh of quadrilateral elements on the plate.

Keyword editor

You must use the Keyword Editor to request output of section forces and moments for the node
at the center of the plate. When you edited the output database request to select the variable, SF,
Abaqus/CAE requested output of section forces and moments at element integration points. To
modify this output request, you must add position=NODES to the OUTPUT REQUESTS block
as follows:

*Element Output, position=NODES
SF,

Job

Create a job, and name it skew. The job must refer to the model Model-1.

8.3.2 Changing the skew angle

The parameterized script changes the skew angle of the plate and computes the maximum bending
moment at the center for two different element types. The script changes the skew angle by modifying
an angular dimension and selecting the vertices to move. You need to add the angular dimension and
determine the indices of the dimension to modify and the vertices to move.

8–14

Abaqus ID:
Printed on:

INVESTIGATING THE SKEW SENSITIVITY OF SHELL ELEMENTS

To add the angular dimension:

1. Return to the Part module.

2. From the main menu bar, select Feature→Edit and select the plate to edit.

3. From the Edit Feature dialog box, select Edit Section Sketch.

4. From the Sketcher toolbox, select the dimension tool and dimension the angle at the lower left
corner of the plate as shown in Figure 8–3.

Figure 8–3 Dimension the angle at the lower left corner of the plate.

To determine the indices of the dimension to modify and the vertices to move:

1. From the Sketcher toolbox, select the edit dimension tool .

2. Select the lower left angular dimension.

3. Enter a dimension of 60, and click OK.

4. Exit the Sketcher tools, and exit the Sketcher.

5. From the Edit Feature dialog box, select OK.

6. Examine the replay file, abaqus.rpy. The last few lines of the replay file will contain the
statements that modified the angular dimension. The statement will look similar to the following:

d[0].setValues(value=60.0,)

8–15

Abaqus ID:
Printed on:

INVESTIGATING THE SKEW SENSITIVITY OF SHELL ELEMENTS

7. The example script, skewExample.py, contains a similar statement that modifies the angular
dimension of the plate. The index of the angular dimension in your model must be the same as the
index in the example script. If the indices are not the same, you must edit the example script and
enter the correct indices.

d[0].setValues(value=angle,)

Save the model database, and name it skew. Abaqus/CAE saves the model database in a file called
skew.cae. The example script opens this model database and parameterizes the model it contains.

8.3.3 Using a script to perform a parametric study
The following shows the contents of the script skewExample.py. The parametric study does the
following:

• Opens the model database and creates variables that refer to the part, the assembly, and the part
instance stored in Model-1.

• Creates variables that refer to the four faces and the nine vertices in the instance of the planar shell
part.

• Skews the plate by modifying the angular dimension in the sketch of the base feature.
• Defines the logical corners of the four faces, and generates a structured mesh.
• Runs the analysis for a range of angles using two element types for each angle.
• Calculates the maximum moment and displacement at the center of the shell.
• Displays X–Y plots in separate viewports of the following:

– Displacement versus skew angle

– Maximum bending moment versus skew angle

– Minimum bending moment versus skew angle

The theoretical results are also plotted.

"""
skewExample.py

This script performs a parameter study of element type versus
skew angle. For more details, see Problem 2.3.4 in the
Abaqus Benchmarks manual.

Before executing this script you must fetch the appropriate
files: abaqus fetch job=skewExample

abaqus fetch job=skewExampleUtils.py
"""

8–16

Abaqus ID:
Printed on:

INVESTIGATING THE SKEW SENSITIVITY OF SHELL ELEMENTS

import part
import mesh
from mesh import S4, S8R, STANDARD, STRUCTURED
import job
from skewExampleUtils import getResults, createXYPlot

Create a list of angle parameters and a list of
element type parameters.

angles = [90, 80, 60, 40, 30]
elemTypeCodes = [S4, S8R]

Open the model database.
openMdb('skew.cae')

model = mdb.models['Model-1']
part = model.parts['Plate']
feature = part.features['Shell planar-1']
assembly = model.rootAssembly
instance = assembly.instances['Plate-1']
job = mdb.jobs['skew']

allFaces = instance.faces
regions =(allFaces[0], allFaces[1], allFaces[2], allFaces[3])
assembly.setMeshControls(regions=regions,

technique=STRUCTURED)
face1 = allFaces.findAt((0.,0.,0.),)
face2 = allFaces.findAt((0.,1.,0.),)
face3 = allFaces.findAt((1.,1.,0.),)
face4 = allFaces.findAt((1.,0.,0.),)
allVertices = instance.vertices
v1 = allVertices.findAt((0.,0.,0.),)
v2 = allVertices.findAt((0.,.5,0.),)
v3 = allVertices.findAt((0.,1.,0.),)
v4 = allVertices.findAt((.5,1.,0.),)
v5 = allVertices.findAt((1.,1.,0.),)
v6 = allVertices.findAt((1.,.5,0.),)
v7 = allVertices.findAt((1.,0.,0.),)
v8 = allVertices.findAt((.5,0.,0.),)
v9 = allVertices.findAt((.5,.5,0.),)

8–17

Abaqus ID:
Printed on:

INVESTIGATING THE SKEW SENSITIVITY OF SHELL ELEMENTS

Create a copy of the feature sketch to modify.

tmpSketch = model.ConstrainedSketch('tmp', feature.sketch)
v, d = tmpSketch.vertices, tmpSketch.dimensions

Create some dictionaries to hold results. Seed the
dictionaries with the theoretical results.

dispData, maxMomentData, minMomentData = {}, {}, {}
dispData['Theoretical'] = ((90, -.001478), (80, -.001409),

(60, -0.000932), (40, -0.000349), (30, -0.000148))
maxMomentData['Theoretical'] = ((90, 0.0479), (80, 0.0486),

(60, 0.0425), (40, 0.0281), (30, 0.0191))
minMomentData['Theoretical'] = ((90, 0.0479), (80, 0.0448),

(60, 0.0333), (40, 0.0180), (30, 0.0108))

Loop over the parameters to perform the parameter study.

for elemCode in elemTypeCodes:

Convert the element type codes to strings.

elemName = repr(elemCode)
dispData[elemName], maxMomentData[elemName], \

minMomentData[elemName] = [], [], []

Set the element type.

elemType = mesh.ElemType(elemCode=elemCode,
elemLibrary=STANDARD)

assembly.setElementType(regions=(instance.faces,),
elemTypes=(elemType,))

for angle in angles:

Skew the geometry and regenerate the mesh.
assembly.deleteMesh(regions=(instance,))

d[0].setValues(value=angle,)
feature.setValues(sketch=tmpSketch)
part.regenerate()

8–18

Abaqus ID:
Printed on:

INVESTIGATING THE SKEW SENSITIVITY OF SHELL ELEMENTS

assembly.regenerate()
assembly.setLogicalCorners(

region=face1, corners=(v1,v2,v9,v8))
assembly.setLogicalCorners(

region=face2, corners=(v2,v3,v4,v9))
assembly.setLogicalCorners(

region=face3, corners=(v9,v4,v5,v6))
assembly.setLogicalCorners(

region=face4, corners=(v8,v9,v6,v7))
assembly.generateMesh(regions=(instance,))

Run the job, then process the results.

job.submit()
job.waitForCompletion()
print 'Completed job for %s at %s degrees' % (elemName,

angle)
disp, maxMoment, minMoment = getResults()
dispData[elemName].append((angle, disp))
maxMomentData[elemName].append((angle, maxMoment))
minMomentData[elemName].append((angle, minMoment))

Plot the results.

createXYPlot((10,10), 'Skew 1', 'Displacement - 4x4 Mesh',
dispData)

createXYPlot((160,10), 'Skew 2', 'Max Moment - 4x4 Mesh',
maxMomentData)

createXYPlot((310,10), 'Skew 3', 'Min Moment - 4x4 Mesh',
minMomentData)

The script imports two functions from skewExampleUtils. The functions do the following:

• Retrieve the displacement and calculate the maximum bending moment at the center of the plate.
• Display curves of theoretical and computed results in a new viewport.

"""
skewExampleUtils.py

Utilities for the scripting tutorial Skew Example.
"""

from abaqus import *

8–19

Abaqus ID:
Printed on:

INVESTIGATING THE SKEW SENSITIVITY OF SHELL ELEMENTS

import visualization

#~~
def getResults():

"""
Retrieve the displacement and calculate the minimum
and maximum bending moment at the center of plate.
"""

from visualization import ELEMENT_NODAL

Open the output database.

odb = visualization.openOdb('skew.odb')
centerNSet = odb.rootAssembly.nodeSets['CENTER']
frame = odb.steps['Step-1'].frames[-1]

Retrieve Z-displacement at the center of the plate.

dispField = frame.fieldOutputs['U']
dispSubField = dispField.getSubset(region=centerNSet)
disp = dispSubField.values[0].data[2]

Average the contribution from each element to the moment,
then calculate the minimum and maximum bending moment at
the center of the plate using Mohr's circle.

momentField = frame.fieldOutputs['SM']
momentSubField = momentField.getSubset(region=centerNSet,

position=ELEMENT_NODAL)
m1, m2, m3 = 0, 0, 0
for value in momentSubField.values:

m1 = m1 + value.data[0]
m2 = m2 + value.data[1]
m3 = m3 + value.data[2]

numElements = len(momentSubField.values)
m1 = m1 / numElements
m2 = m2 / numElements
m3 = m3 / numElements
momentA = 0.5 * (abs(m1) + abs(m2))
momentB = sqrt(0.25 * (m1 - m2)**2 + m3**2)
maxMoment = momentA + momentB
minMoment = momentA - momentB

odb.close()

return disp, maxMoment, minMoment

8–20

Abaqus ID:
Printed on:

EDITING DISPLAY PREFERENCES AND GUI SETTINGS

#~~~
def createXYPlot(vpOrigin, vpName, plotName, data):

"""
Display curves of theoretical and computed results in
a new viewport.
"""

from visualization import USER_DEFINED

vp = session.Viewport(name=vpName, origin=vpOrigin,
width=150, height=100)

xyPlot = session.XYPlot(plotName)
chart = xyPlot.charts.values()[0]
curveList = []
for elemName, xyValues in sorted(data.items()):

xyData = session.XYData(elemName, xyValues)
curve = session.Curve(xyData)
curveList.append(curve)

chart.setValues(curvesToPlot=curveList)
chart.axes1[0].axisData.setValues(useSystemTitle=False,title='Skew Angle')
chart.axes2[0].axisData.setValues(useSystemTitle=False,title=plotName)
vp.setValues(displayedObject=xyPlot)

8.4 Editing display preferences and GUI settings

You can use the Abaqus Scripting Interface to edit the abaqus_2016.gpr file, which includes settings
that control many default display preferences and GUI settings in the Abaqus/CAE user interface. To
enable editing of this file, you must import the caePrefsAccess module. This section describes the
structure of the abaqus_2016.gpr file and provides an overview of customizing its settings; for more
detailed information about the functions available in the caePrefsAccess module, see Chapter 1,
“Abaqus/CAE Display Preferences commands,” of the Abaqus Scripting Reference Guide.

WARNING: Editing the abaqus_2016.gpr file is for experienced users only. Do not use the
functions in the caePrefsAccess module unless you are comfortable with the Abaqus Scripting
Interface and understand the structure of the abaqus_2016.gpr file. In addition, you should not
have Abaqus/CAE running when you make changes to the graphical preferences file.

You can retrieve the location of your abaqus_2016.gpr file using the
getGuiPrefsFileName function. The file records default settings in two sections:
display options reside in the sessionOptions section, and GUI settings reside in the

8–21

Abaqus ID:
Printed on:

EDITING DISPLAY PREFERENCES AND GUI SETTINGS

guiPreferences section. Editing the options in one section does not have any effect on the options
in the other section.

sessionOptions

The session options consist of the settings that you can save using the File→Save Display Options
menu option. In Abaqus/CAE you can save these options in the current directory or in your home
directory.

You can display and edit session options using the openSessionOptions function.

> abaqus Python
...
>>> import caePrefsAccess
>>> sessionOptions = caePrefsAccess.openSessionOptions()
>>> printValuesList(sessionOptions)
...
sessionOptions['session.animationController.animationOptions']\

['frameCounter']:[type:bool] True
sessionOptions['session.animationController.animationOptions']\

['frameRate']:[type:int] 100
sessionOptions['session.aviOptions']['compressionMethod']:\

[type:SymbolicConstant] CODEC
sessionOptions['session.aviOptions']['compressionQuality']:[type:int] 75
...

The following statement changes the frame rate to 50. You should confirm that the data type
you specify matches the type of the existing value.

>>> sessionOptions['session.animationController.animationOptions']\
['frameRate'] = 50

You can save the options you change to the original file by issuing the following command:

>>> sessionOptions.save()

guiPreferences

The GUI preferences control many default behaviors in the Abaqus/CAE graphical interface,
including size and location of the main window, size and location of the dialog boxes within
Abaqus/CAE, and the number of recent files listed in the Start Session dialog box and in the
File menu.

Abaqus/CAE saves guiPreferences settings to your home directory when you exit
the application. A separate guiPreferences record is stored in the preferences file for each
display you use, so you must specify the displayName you want to modify when you open the
guiPreferences settings. You can obtain a list of the available displayName settings by
calling the getDisplayNamesInGuiPreferences function, and you can edit these settings
by using the openGuiPreferences function and specifying the displayName of the settings
that you want to modify.

8–22

Abaqus ID:
Printed on:

EDITING DISPLAY PREFERENCES AND GUI SETTINGS

In the following example, the openGuiPreferences function is used to examine the X-
and Y-location and the height and width of the following components of Abaqus/CAE:

• Select Font dialog box

• Abaqus/CAE main window
• Adaptivity Plotter plug-in

• Amplitude Plotter plug-in

• Create Weld dialog box

• Copy Annotation dialog box

The sample statements follow:

> abaqus Python
...
>>> import caePrefsAccess
>>> from caePrefsAccess import openGuiPreferences, CURRENT, HOME
>>> from caePrefsAccess import getGuiPrefsFileName,

getDisplayNamesInGuiPreferences
>>> from caePrefsAccess import printValuesList
>>> guiPrefsFileName = getGuiPrefsFileName()
>>> dispNames = getDisplayNamesInGuiPreferences(guiPrefsFileName)
>>> print dispNames
['preludesim']
>>> displayName = dispNames[0]
>>> guiPrefs = openGuiPreferences(displayName)
>>> printValuesList(guiPrefs)
...
guiPreferences['Abaqus/CAE']['Geometry']['AFXFontSelectorDialog text']:\

[type:str] '617,298,281,350'
guiPreferences['Abaqus/CAE']['Geometry']['AFXMainWindow']:[type:str] \

'193,67,1036,831'
guiPreferences['Abaqus/CAE']['Geometry']['AdaptivityPlotter']:[type:str] \

'11,156,226,240'
guiPreferences['Abaqus/CAE']['Geometry']['Amplitude Plotter']:[type:str] \

'1105,189,312,290'
guiPreferences['Abaqus/CAE']['Geometry']['CREATE_Weld']:[type:str] \

'10,276,377,560'
guiPreferences['Abaqus/CAE']['Geometry']['Copy MDB Annotation']:[type:str] \

'122,273,160,79'

You can change the geometry of the Abaqus/CAE main window by issuing a command like the
following:

>>> guiPreferences['Abaqus/CAE']['Geometry']['AFXMainWindow'] = '193,67,800,600'

You can save the options you change to the original file by issuing the following command:

>>> sessionOptions.save()

8–23

Abaqus ID:
Printed on:

Part V: Accessing an output database
This section describes how you access the data in an output database using either the Abaqus Scripting
Interface or the C++ Application Programming Interface (API). You can read model data and field and
history data from an output database. You can also write field and history data to an output database. The
following topics are covered:

• Chapter 9, “Using the Abaqus Scripting Interface to access an output database”
• Chapter 10, “Using C++ to access an output database”
The Abaqus Scripting Interface commands that read and write data from an output database are described

in Chapter 34, “Odb commands,” of the Abaqus Scripting Reference Guide.
The C++ commands that read and write data from an output database are described in Chapter 61, “Odb

commands,” of the Abaqus Scripting Reference Guide.

Abaqus ID:
Printed on:

HOW THE OBJECT MODEL FOR THE OUTPUT DATABASE RELATES TO COMMANDS

9. Using the Abaqus Scripting Interface to access an
output database

The following sections describe the architecture of an output database and how to use the Abaqus
Scripting Interface to access data from an output database. The following topics are covered:

• “What do you need to access the output database?,” Section 9.1
• “How the object model for the output database relates to commands,” Section 9.2
• “Object model for the output database,” Section 9.3
• “Executing a script that accesses an output database,” Section 9.4
• “Reading from an output database,” Section 9.5
• “Writing to an output database,” Section 9.6
• “Exception handling in an output database,” Section 9.7
• “Computations with Abaqus results,” Section 9.8
• “Improving the efficiency of your scripts,” Section 9.9
• “Example scripts that access data from an output database,” Section 9.10

9.1 What do you need to access the output database?

To use the Abaqus Scripting Interface to access an output database, you need to understand the following:

• How an Abaqus analysis outputs data to the output database as well as the difference between field
data, history data, and model data. The output database is described in detail in “Output to the
output database,” Section 4.1.3 of the Abaqus Analysis User’s Guide, and “Defining an assembly,”
Section 2.10.1 of the Abaqus Analysis User’s Guide.

• How to program using Python. An introduction to the Python programming language is provided
in Chapter 4, “Introduction to Python.”

• How to use Abaqus objects. Abaqus objects are explained in Chapter 5, “Using Python and the
Abaqus Scripting Interface.”

9.2 How the object model for the output database relates to
commands

You need to understand the object model for the output database both to read data from it and to write data
to it. An object model describes the relationship between objects. The object model for the Abaqus/CAE
model is described in “The Abaqus object model,” Section 6.1.

9–1

Abaqus ID:
Printed on:

OBJECT MODEL FOR THE OUTPUT DATABASE

For example, consider the object model for field output data shown in Figure 9–1. The Odb object
at the top of the figure is created when you issue the command to open or create an output database. As
you move down the object model, an OdbStep object is a member of the Odb object; similarly, a Frame
object is a member of the OdbStep object. The FieldOutput object has two members—fieldValue and
fieldLocation.

The object model translates directly to the structure of an Abaqus Scripting Interface command.
For example, the following command refers to a Frame object in the sequence of frames contained in an
OdbStep object:

odb.steps['10 hz vibration'].frames[3]

Similarly, the following command refers to the sequence of field data contained in a FieldOutput object.

odb.steps['10 hz vibration'].frames[3].\
fieldOutputs['U'].values[47]

You use commands to access objects by stepping through the hierarchy of objects in the object model. The
Access and Path descriptions in Chapter 34, “Odb commands,” of the Abaqus Scripting Reference
Guide describe the interface definition of the command. The interface definition of the command reflects
the hierarchy of objects in the object model. If you are unsure of the structure of the output database,
you can issue the objectname.__members__ command from the command line interface to view the
members of an object.

9.3 Object model for the output database

An output database generated from an Abaqus analysis contains both model and results data as shown
in Figure 9–1.

Model data

Model data describe the parts and part instances that make up the root assembly; for example, nodal
coordinates, set definitions, and element types. Model data are explained in more detail in “Model
data,” Section 9.3.1.

Results data

Results data describe the results of your analysis; for example, stresses, strains, and displacements.
You use output requests to configure the contents of the results data. Results data can be either field
output data or history output data; for a more detailed explanation, see “Results data,” Section 9.3.2.

Note: For a description of object models, see “An overview of the Abaqus object model,” Section 6.1.1.

You can find more information on the format of the output database in “Output to the output database,”
Section 4.1.3 of the Abaqus Analysis User’s Guide.

9–2

Abaqus ID:
Printed on:

OBJECT MODEL FOR THE OUTPUT DATABASE

steps

 = Container
 = Singular object

odb
rootAssembly

parts

sections

Model Data

frames

historyRegions

Results Data

point
historyOutputs

fieldOutputs

materials

Figure 9–1 The output database object model.

9.3.1 Model data
Model data define the model used in the analysis; for example, the parts, materials, initial and boundary
conditions, and physical constants. More information about model data can be found in “The Abaqus
object model,” Section 6.1, and “Defining an assembly,” Section 2.10.1 of the Abaqus Analysis User’s
Guide.

Abaqus does not write all the model data to the output database; for example, you cannot access
loads, and only certain interactions are available. Model data that are stored in the output database
include parts, the root assembly, part instances, regions, materials, sections, section assignments, and
section categories, each of which is stored as an Abaqus Scripting Interface object. These components
of model data are described below.

Parts

Apart in the output database is a finite element idealization of an object. Parts are the building blocks
of an assembly and can be either rigid or deformable. Parts are reusable; they can be instanced
multiple times in the assembly. Parts are not analyzed directly; a part is like a blueprint for its
instances. A part is stored in an output database as a collection of nodes, elements, surfaces, and
sets.

9–3

Abaqus ID:
Printed on:

OBJECT MODEL FOR THE OUTPUT DATABASE

The root assembly

The root assembly is a collection of positioned part instances. An analysis is conducted by defining
boundary conditions, constraints, interactions, and a loading history for the root assembly. The
output database object model contains only one root assembly.

Part instances

A part instance is a usage of a part within the assembly. All characteristics (such as mesh and
section definitions) defined for a part become characteristics for each instance of that part—they
are inherited by the part instances. Each part instance is positioned independently within the root
assembly.

Materials

Materials contain material models comprised of one or morematerial property definitions. The same
material models may be used repeatedly within a model; each component that uses the samematerial
model shares identical material properties. Many materials may exist within a model database, but
only the materials that are used in the assembly are copied to the output database.

Sections

Sections add the properties that are necessary to define completely the geometric and material
properties of an element. Various element types require different section types to complete their
definitions. For example, shell elements in a composite part require a section that provides a
thickness, multiple material models, and an orientation for each material model; all these pieces
combine to complete the composite shell element definition. Like materials, only those sections
that are used in the assembly are copied to the output database.

Section assignments

Section assignments link section definitions to the regions of part instances. Section assignments
in the output database maintain this association. Sections are assigned to each part in a model, and
the section assignments are propagated to each instance of that part.

Section categories

You use section categories to group the regions of the model that use the same section definitions;
for example, the regions that use a shell section with five section points. Within a section category,
you use the section points to identify the location of results; for example, you can associate section
point 1 with the top surface of a shell and section point 5 with the bottom surface.

Analytical rigid surface

Analytical rigid surfaces are geometric surfaces with profiles that can be described with straight
and curved line segments. Using analytical rigid surfaces offers important advantages in contact
modeling.

9–4

Abaqus ID:
Printed on:

OBJECT MODEL FOR THE OUTPUT DATABASE

Rigid bodies

You use rigid bodies to define a collection of nodes, elements, and/or surfaces whose motion is
governed by the motion of a single node, called the rigid body reference node.

Pretension Sections

Pretension sections are used to associate a pre-tension node with a pre-tension section. The pre-
tension section can be defined using a surface for continuum elements or using an element for truss
or beam elements.

Interactions

Interactions are used to define contact between surfaces in an analysis. Only contact interactions
defined using contact pairs are written to the output database.

Interaction properties

Interaction properties define the physical behavior of surfaces involved in an interaction. Only
tangential friction behavior is written to the output database.

Figure 9–2 shows the model data object model.

steps

 = Container
 = Singular object

odb

nodeSets

elementSets

surfaces

instances

nodeSets

elementSets

surfaces

elements

nodes

rootAssembly

parts

sectionCategories

description

Model Data

Results Data

HistoryRegion

fieldOutputs

point
historyOutputs

materials

name

Step

frames

historyRegions

Frame

Figure 9–2 The model data object model.

9–5

Abaqus ID:
Printed on:

OBJECT MODEL FOR THE OUTPUT DATABASE

The objects stored as model data in an output database are similar to the objects stored in an
Abaqus/CAE model database. However, the output database does not require a model name because
an analysis job always refers to a single model and the resulting output database can contain only one
model. For example, the following Abaqus Scripting Interface statements refer to an Instance object
in the model database:

mdb = openMdb(pathName='/users/smith/mdb/hybridVehicle')
myModel = mdb.models['Transmission']
myPart = myModel.rootAssembly.instances['housing']

Similar statements refer to an Instance object in the output database.

odb = openOdb(path='/users/smith/odb/transmission.odb')
myPart = odb.rootAssembly.instances['housing']

You can use the prettyPrint method to display a text representation of an output database
and to view the structure of the model data in the object model. For example, the following shows the
output from prettyPrint applied to the output database created by the Abaqus/CAE cantilever beam
tutorial:
from odbAccess import *
from textRepr import *
odb=openOdb('Deform.odb')
prettyPrint(odb,2)
({'analysisTitle': 'Cantilever beam tutorial',

'closed': False,
'description': 'DDB object',
'diagnosticData': ({'analysisErrors': 'OdbSequenceAnalysisError object',

'analysisWarnings': 'OdbSequenceAnalysisWarning object',
'jobStatus': JOB_STATUS_COMPLETED_SUCCESSFULLY,
'jobTime': 'OdbJobTime object',
'numberOfAnalysisErrors': 0,
'numberOfAnalysisWarnings': 0,
'numberOfSteps': 1,
'numericalProblemSummary': 'OdbNumericalProblemSummary object',
'steps': 'OdbSequenceDiagnosticStep object'}),

'isReadOnly': False,
'jobData': ({'analysisCode': ABAQUS_STANDARD,

'creationTime': 'date time year',
'machineName': '',
'modificationTime': 'date time year',
'name': 'Deform.odb',
'precision': SINGLE_PRECISION,
'productAddOns': 'tuple object',
'version': 'Abaqus/Standard release'}),

'name': 'Deform.odb',
'parts': {'BEAM': 'Part object'},
'path': 'C:/Deform.odb',
'rootAssembly': ({'connectorOrientations': 'ConnectorOrientationArray object',

'datumCsyses': 'Repository object',
'elementSet': 'Repository object',
'elementSets': 'Repository object',
'elements': 'OdbMeshElementArray object',
'instance': 'Repository object',
'instances': 'Repository object',
'name': 'ASSEMBLY',
'nodeSet': 'Repository object',
'nodeSets': 'Repository object',
'nodes': 'OdbMeshNodeArray object',
'sectionAssignments': 'Sequence object',
'surface': 'Repository object',
'surfaces': 'Repository object'}),

'sectionCategories': {'solid < STEEL >': 'SectionCategory object'},

9–6

Abaqus ID:
Printed on:

OBJECT MODEL FOR THE OUTPUT DATABASE

'sectorDefinition': None,
'steps': {'Beamload': 'OdbStep object'},
'userData': ({'annotations': 'Repository object',

'xyData': 'Repository object',
'xyDataObjects': 'Repository object'})})

For more information, see “prettyPrint,” Section 52.2.4 of the Abaqus Scripting Reference Guide.

9.3.2 Results data
Results data describe the results of your analysis. Abaqus organizes the analysis results in an output
database into the following components:

Steps

An Abaqus analysis contains a sequence of one or more analysis steps. Each step is associated with
an analysis procedure.

Frames

Each step contains a sequence of frames, where each increment of the analysis that resulted in output
to the output database is called a frame. In a frequency or buckling analysis each eigenmode is stored
as a separate frame. Similarly, in a steady-state harmonic response analysis each frequency is stored
as a separate frame.

Field output

Field output is intended for infrequent requests for a large portion of the model and can be used
to generate contour plots, animations, symbol plots, and displaced shape plots in the Visualization
module of Abaqus/CAE. You can also use field output to generate an X–Y data plot. Only complete
sets of basic variables (for example, all the stress or strain components) can be requested as field
output. Field output is composed of a “cloud of data values” (e.g., stress tensors at each integration
point for all elements). Each data value has a location, type, and value. You use the regions defined
in the model data, such as an element set, to access subsets of the field output data. Figure 9–3
shows the field output data object model within an output database.

History output

History output is output defined for a single point or for values calculated for a portion of the model
as a whole, such as energy. History output is intended for relatively frequent output requests for
small portions of the model and can be displayed in the form of X–Y data plots in the Visualization
module of Abaqus/CAE. Individual variables (such as a particular stress component) can be
requested.

Depending on the type of output expected, a HistoryRegion object can be defined for one of
the following:

• a node
• an integration point

9–7

Abaqus ID:
Printed on:

OBJECT MODEL FOR THE OUTPUT DATABASE

steps

historyRegions

 = Container
 = Singular object

odb
rootAssembly

parts

sections

Model Data

Results Data

frames

fieldValues
fieldOutputs

materials

Figure 9–3 The field output data object model.

• a region
• the whole model

The output from all history requests that relate to a particular point or region is then collected in
one HistoryRegion object. Figure 9–4 shows the history output data object model within an output
database.

steps

frames

 = Container
 = Singular object

odb
rootAssembly

parts

data

sections

Model Data

Results Data

historyRegions
point

historyOutputs

fieldOutputs

materials

Figure 9–4 The history output data.

9–8

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

9.4 Executing a script that accesses an output database

If your script accesses and manipulates data in an output database, you can use either of the following
methods to execute the script:

• Type abaqus python scriptname.py at the system prompt.

• Select File→Run Script from the Abaqus/CAE main menu bar, and select the file to execute.

Your script must contain the following statement:

from odbAccess import *

In addition, if your script refers to any of the Symbolic Constants defined in the Abaqus Scripting
Interface, your script must contain the following statement:

from abaqusConstants import *

If your script accesses or creates material objects, or if it accesses or creates section or beam profile
objects, it must contain the following statements, respectively:

from odbMaterial import *
from odbSection import *

9.5 Reading from an output database

The following sections describe how you use Abaqus Scripting Interface commands to read data from
an output database. The following topics are covered:

• “The Abaqus/CAE Visualization module tutorial output database,” Section 9.5.1
• “Making the Odb commands available,” Section 9.5.2
• “Opening an output database,” Section 9.5.3
• “Reading model data,” Section 9.5.4
• “Reading results data,” Section 9.5.5
• “Reading field output data,” Section 9.5.6
• “Using regions to read a subset of field output data,” Section 9.5.7
• “Reading history output data,” Section 9.5.8
• “An example of reading node and element information from an output database,” Section 9.5.9
• “An example of reading field data from an output database,” Section 9.5.10

9–9

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

9.5.1 The Abaqus/CAE Visualization module tutorial output database
The following sections describe how you can access the data in an output database. Examples
are included that refer to the Abaqus/CAE Visualization module tutorial output database,
viewer_tutorial.odb. This database is generated by the input file from Case 2 of the
example problem, “Indentation of an elastomeric foam specimen with a hemispherical punch,”
Section 1.1.4 of the Abaqus Example Problems Guide. The problem studies the behavior of a soft
elastomeric foam block indented by a heavy metal punch. The tutorial shows how you can use the
Visualization module to view the data in the output database. The tutorial describes how you can choose
the variable to display, how you can step through the steps and frames in the analysis, and how you can
create X–Y data from history output.

You are encouraged to copy the tutorial output database to a local directory and experiment with the
Abaqus Scripting Interface. The output database and the example scripts from this guide can be copied
to the user’s working directory using the abaqus fetch utility:

abaqus fetch job=name

where name.py is the name of the script or name.odb is the name of the output database (see “Fetching
sample input files,” Section 3.2.17 of the Abaqus Analysis User’s Guide). For example, use the following
command to retrieve the tutorial output database:

abaqus fetch job=viewer_tutorial

9.5.2 Making the Odb commands available
To make the Odb commands available to your script, you first need to import the odbAccess module
using the following statements:

from odbAccess import *
from abaqusConstants import *

To make the material and section Odb commands available to your script, you also need to import the
relevant module using the following statements:

from odbMaterial import *
from odbSection import *

9.5.3 Opening an output database
You use the openOdbmethod to open an existing output database. For example, the following statement
opens the output database used by the Abaqus/CAE Visualization module tutorial:

odb = openOdb(path='viewer_tutorial.odb')

9–10

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

After you open the output database, you can access its contents using the methods and members of the
Odb object returned by the openOdb method. In the above example the Odb object is referred to by the
variable odb. For a full description of the openOdb command, see “openOdb,” Section 34.32.5 of the
Abaqus Scripting Reference Guide.

9.5.4 Reading model data
The following list describes the objects in model data and the commands you use to read model data.
Many of the objects are repositories, and you will find the keys() method useful for determining the
names of the objects in the repository. For more information, see “Using dictionaries,” Section 4.6.2,
and “Repositories,” Section 5.3.3.

The root assembly

An output database contains only one root assembly. You access the root assembly through the
OdbAssembly object.

myAssembly = odb.rootAssembly

Part instances

Part instances are stored in the instances repository under the OdbAssembly object. The
following statements display the repository keys of the part instances in the tutorial output database:

for instanceName in odb.rootAssembly.instances.keys():
print instanceName

The output database contains only one part instance, and the resulting output is

PART-1-1

Regions

Regions in the output database are OdbSet objects. Regions refer to the part and assembly sets stored
in the output database. A part set refers to elements or nodes in an individual part and appears in
each instance of the part in the assembly. An assembly set refers to the elements or nodes in part
instances in the assembly. A region can be one of the following:

• A node set
• An element set
• A surface
For example, the following statement displays the node sets in the OdbAssembly object:

print 'Node sets = ',odb.rootAssembly.nodeSets.keys()

9–11

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

The resulting output is

Node sets = ['ALL NODES']

The following statements display the node sets and the element sets in the PART-1-1 part instance:

print 'Node sets = ',odb.rootAssembly.instances[
'PART-1-1'].nodeSets.keys()

print 'Element sets = ',odb.rootAssembly.instances[
'PART-1-1'].elementSets.keys()

The resulting output is

Node sets = ['ALLN', 'BOT', 'CENTER', 'N1', 'N19', 'N481',
'N499', 'PUNCH', 'TOP']

Element sets = ['CENT', 'ETOP', 'FOAM', 'PMASS', 'UPPER']

The following statement assigns a variable (topNodeSet) to the ’TOP’ node set in the PART-
1-1 part instance:

topNodeSet = odb.rootAssembly.instances[
'PART-1-1'].nodeSets['TOP']

The type of the object to which topNodeSet refers is OdbSet. After you create a variable that
refers to a region, you can use the variable to refer to a subset of field output data, as described in
“Using regions to read a subset of field output data,” Section 9.5.7.

Materials

You can read material data from an output database.
Materials are stored in the materials repository under the Odb object.

Access the materials repository using the command:

allMaterials = odb.materials
for materialName in allMaterials.keys():

print 'Material Name : ',materialName

To print isotropic elastic material properties in a material object:

for material in allMaterials.values():
if hasattr(material,'elastic'):

elastic = material.elastic
if elastic.type == ISOTROPIC:

print 'isotropic elastic behavior, type = %s' \
% elastic.moduli

title1 = 'Young modulus Poisson\'s ratio '
title2 = ''
if elastic.temperatureDependency == ON:

9–12

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

title2 = 'Temperature '
dep = elastic.dependencies
title3 = ''
for x in range(dep):

title3 += ' field # %d' % x
print '%s %s %s' % (title1,title2,title3)
for dataline in elastic.table:

print dataline

Some Material definitions have suboptions. For example, to access the smoothing type used
for biaxial test data specified for a hyperelastic material:

if hasattr(material,'hyperelastic'):
hyperelastic = material.hyperelastic
testData = hyperelastic.testData
if testData == ON:

if hasattr(hyperelastic,'biaxialTestData'):
biaxialTestData = hyperelastic.biaxialTestData
print 'smoothing type : ',biaxialTestData.smoothing

Chapter 29, “Material commands,” of the Abaqus Scripting Reference Guide describes the
Material object commands in more detail.

Sections

You can read section data from an output database.
Sections are stored in the sections repository under the Odb object.

The following statements display the repository keys of the sections in an output database:

allSections = odb.sections
for sectionName in allSections.keys():

print 'Section Name : ',sectionName

The Section object can be one of the various section types. The type command provides
information on the section type. For example, to determine whether a section is of type
“homogeneous solid section” and to print it’s thickness and associated material name:

for mySection in allSections.values():
if type(mySection) == HomogeneousSolidSectionType:

print 'material name = ', mySection.material
print 'thickness = ', mySection.thickness

Similarily, to access the beam profile repository:

allProfiles = odb.profiles.values()
numProfiles = len(allProfiles)

9–13

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

print 'Total Number of profiles in the ODB : %d' \
% numProfiles

The Profile object can be one of the various profile types. The type command provides
information on the profile type. For example, to output the radius of all circular profiles in the odb:

for myProfile in allProfiles:
if type(myProfile) == CircularProfileType:

print 'profile name = %s, radius = %8.3f' \
% (myProfile.name,myProfile.r)

Section assignments

Section assignments are stored in the odbSectionAssignmentArray repository under the
OdbAssembly object.
All elements in an Abaqus analysis need to be associated with section and material properties.
Section assignments provide the relationship between elements in a part instance and their
section properties. The section properties include the associated material name. To access the
sectionAssignments repository from the PartInstance object:

instances = odb.rootAssembly.instances
for instance in instances.values():

assignments = instance.sectionAssignments
print 'Instance : ',instance.name
for sa in assignments:

region = sa.region
elements = region.elements
print ' Section : ',sa.sectionName
print ' Elements associated with this section : '
for e in elements:

print ' label : ',e.label

Analytical rigid surfaces

Analytical rigid surfaces are defined under a OdbPart object or a OdbInstance object. Each OdbPart
or OdbInstance can have only one analytical rigid surface.

Rigid bodies

Rigid bodies are stored in the odbRigidBodyArray. The OdbPart object, OdbInstance object,
and OdbAssembly object each have an odbRigidBodyArray.

Pretension sections

Pretension sections are stored in odbPretensionSectionArray under the OdbAssembly
object.

9–14

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

9.5.5 Reading results data
The following list describes the objects in results data and the commands you use to read results data.
As with model data you will find it useful to use the keys()method to determine the keys of the results
data repositories.

Steps

Steps are stored in the steps repository under the Odb object. The key to the steps repository
is the name of the step. The following statements print out the keys of each step in the repository:

for stepName in odb.steps.keys():
print stepName

The resulting output is

Step-1
Step-2
Step-3

Note: An index of 0 in a sequence refers to the first value in the sequence, and an index of −1 refers
to the last value. You can use the following syntax to refer to an individual item in a repository:

step1 = odb.steps.values()[0]
print step1.name

The resulting output is

Step-1

Frames

Each step contains a sequence of frames, where each increment of the analysis (or each mode in an
eigenvalue analysis) that resulted in output to the output database is called a frame. The following
statement assigns a variable to the last frame in the first step:

lastFrame = odb.steps['Step-1'].frames[-1]

9.5.6 Reading field output data
Field output data are stored in the fieldOutputs repository under the OdbFrame object. The key to
the repository is the name of the variable. The following statements list all the variables found in the last
frame of the first step (the statements use the variable lastFrame that we defined previously):

for fieldName in lastFrame.fieldOutputs.keys():
print fieldName

9–15

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

COPEN TARGET/IMPACTOR
CPRESS TARGET/IMPACTOR
CSHEAR1 TARGET/IMPACTOR
CSLIP1 TARGET/IMPACTOR
LE
RF
RM3
S
U
UR3

Different variables can be written to the output database at different frequencies. As a result, not all
frames will contain all the field output variables.

You can use the following to view all the available field data in a frame:

For each field output value in the last frame,
print the name, description, and type members.

for f in lastFrame.fieldOutputs.values():
print f.name, ':', f.description
print 'Type: ', f.type

For each location value, print the position.

for loc in f.locations:
print 'Position:',loc.position

print

The resulting print output lists all the field output variables in a particular frame, along with their type
and position.

COPEN TARGET/IMPACTOR : Contact opening
Type: SCALAR
Position: NODAL

CPRESS TARGET/IMPACTOR : Contact pressure
Type: SCALAR
Position: NODAL

CSHEAR1 TARGET/IMPACTOR : Frictional shear
Type: SCALAR
Position: NODAL

9–16

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

CSLIP1 TARGET/IMPACTOR : Relative tangential motion direction 1
Type: SCALAR
Position: NODAL

LE : Logarithmic strain components
Type: TENSOR_2D_PLANAR
Position: INTEGRATION_POINT

RF : Reaction force
Type: VECTOR
Position: NODAL

RM3 : Reaction moment
Type: SCALAR
Position: NODAL

S : Stress components
Type: TENSOR_2D_PLANAR
Position: INTEGRATION_POINT

U : Spatial displacement
Type: VECTOR
Position: NODAL

UR3 : Rotational displacement
Type: SCALAR
Position: NODAL

In turn, a FieldOutput object has a member values that is a sequence of FieldValue objects that
contain data. Each data value in the sequence has a particular location in the model. You can query the
FieldValue object to determine the location of a data value; for example,

displacement=lastFrame.fieldOutputs['U']
fieldValues=displacement.values

For each displacement value, print the nodeLabel
and data members.

for v in fieldValues:
print 'Node = %d U[x] = %6.4f, U[y] = %6.4f' % (v.nodeLabel,
v.data[0], v.data[1])

9–17

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

The resulting output is

Node = 1 U[x] = 0.0000, U[y] = -76.4580
Node = 3 U[x] = -0.0000, U[y] = -64.6314
Node = 5 U[x] = 0.0000, U[y] = -52.0814
Node = 7 U[x] = -0.0000, U[y] = -39.6389
Node = 9 U[x] = -0.0000, U[y] = -28.7779
Node = 11 U[x] = -0.0000, U[y] = -20.3237...

The data in the FieldValue object depend on the field output variable, which is displacement in the above
example. The following command lists all the members of a particular FieldValue object:

fieldValues[0].__members__

The resulting output is

['instance', 'elementLabel', 'nodeLabel', 'position',
'face', 'integrationPoint', 'sectionPoint',

'localCoordSystem', 'type', 'data', 'magnitude',
'mises', 'tresca', 'press', 'inv3', 'maxPrincipal',
'midPrincipal', 'minPrincipal', 'maxInPlanePrincipal',
'minInPlanePrincipal', 'outOfPlanePrincipal']

Where applicable, you can obtain section point information from the FieldValue object.

9.5.7 Using regions to read a subset of field output data
After you have created an OdbSet object using model data, you can use the getSubsetmethod to read
only the data corresponding to that region. Typically, you will be reading data from a region that refers to
a node set or an element set. For example, the following statements create a variable called center that
refers to the node set PUNCH at the center of the hemispherical punch. In a previous section you created
the displacement variable that refers to the displacement of the entire model in the final frame of the
first step. Now you use the getSubset command to get the displacement for only the center region.

center = odb.rootAssembly.instances['PART-1-1'].nodeSets['PUNCH']
centerDisplacement = displacement.getSubset(region=center)
centerValues = centerDisplacement.values
for v in centerValues:

print v.nodeLabel, v.data

The resulting output is

1000 array([0.0000, -76.4555], 'd')

9–18

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

The arguments to getSubset are a region, an element type, a position, or section point data. The
following is a second example that uses an element set to define the region and generates formatted output.
For more information on tuples, the len() function, and the range() function, see “Sequences,”
Section 4.5.4, and “Sequence operations,” Section 4.5.5.

topCenter = \
odb.rootAssembly.instances['PART-1-1'].elementSets['CENT']

stressField = odb.steps['Step-2'].frames[3].fieldOutputs['S']

The following variable represents the stress at
integration points for CAX4 elements from the
element set "CENT."

field = stressField.getSubset(region=topCenter,
position=INTEGRATION_POINT, elementType = 'CAX4')

fieldValues = field.values
for v in fieldValues:

print 'Element label = ', v.elementLabel,
if v.integrationPoint:

print 'Integration Point = ', v.integrationPoint
else:

print
For each tensor component.

for component in v.data:

Print using a format. The comma at the end of the
print statement suppresses the carriage return.

print '%-10.5f' % component,

After each tuple has printed, print a carriage return.

print

The resulting output is

Element label = 1 Integration Point = 1
S : 0.01230 -0.05658 0.00892 -0.00015
Element label = 1 Integration Point = 2
S : 0.01313 -0.05659 0.00892 -0.00106
Element label = 1 Integration Point = 3

9–19

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

S : 0.00619 -0.05642 0.00892 -0.00023
Element label = 1 Integration Point = 4
S : 0.00697 -0.05642 0.00892 -0.00108
Element label = 11 Integration Point = 1
S : 0.01281 -0.05660 0.00897 -0.00146
Element label = 11 Integration Point = 2
S : 0.01183 -0.05651 0.00897 -0.00257
Element label = 11 Integration Point = 3 ...

Possible values for the position argument to the getSubset command are:

• INTEGRATION_POINT
• NODAL
• ELEMENT_NODAL
• CENTROID

If the requested field values are not found in the output database at the specified ELEMENT_NODAL or
CENTROID positions, they are extrapolated from the field data at the INTEGRATION_POINT position.

9.5.8 Reading history output data
History output is output defined for a single point or for values calculated for a portion of the model as
a whole, such as energy. Depending on the type of output expected, the historyRegions repository
contains data from one of the following:

• a node
• an integration point
• a region
• a material point

Note: History data from an analysis cannot contain multiple points.

The history data object model is shown in Figure 9–5. In contrast to field output, which is
associated with a frame, history output is associated with a step. History output data are stored
in the historyRegions repository under an OdbStep object. Abaqus creates keys to the
historyRegions repository that describe the region; for example,

• ’Node PART-1-1.1000’

• ’Element PART-1-1.2 Int Point 1’

• ’Assembly ASSEMBLY’

The output from all history requests that relate to a specified point is collected in one HistoryRegion
object. A HistoryRegion object contains multiple HistoryOutput objects. Each HistoryOutput object, in
turn, contains a sequence of (frameValue, value) sequences. In a time domain analysis (domain=TIME)
the sequence is a tuple of (stepTime, value). In a frequency domain analysis (domain=FREQUENCY) the

9–20

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

steps

frames

 = Container
 = Singular object

odb
rootAssembly

parts

data

sections

Model Data

Results Data

historyRegions
point

historyOutputs

fieldOutputs

materials

Figure 9–5 The history data object model.

sequence is a tuple of (frequency, value). In a modal domain analysis (domain=MODAL) the sequence
is a tuple of (mode, value).

In the analysis that generated the Abaqus/CAE Visualization module tutorial output database, the
user asked for the following history output:

At the rigid body reference point (Node 1000)

• U
• V
• A

At the corner element

• MISES
• LE22
• S22

The history output data can be retrieved from the HistoryRegion objects in the output database. The
tutorial output database contains HistoryRegion objects that relate to the rigid body reference point and
the integration points of the corner element as follows:

• ’Node PART-1-1.1000’

• ’Element PART-1-1.1 Int Point 1’

• ’Element PART-1-1.1 Int Point 2’

9–21

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

• ’Element PART-1-1.1 Int Point 3’

• ’Element PART-1-1.1 Int Point 4’

The following statements read the tutorial output database and write the U2 history data from the second
step to an ASCII file that can be plotted by Abaqus/CAE:

from odbAccess import *

odb = openOdb(path='viewer_tutorial.odb')
step2 = odb.steps['Step-2']
region = step2.historyRegions['Node PART-1-1.1000']
u2Data = region.historyOutputs['U2'].data
dispFile = open('disp.dat','w')
for time, u2Disp in u2Data:

dispFile.write('%10.4E %10.4E\n' % (time, u2Disp))
dispFile.close()

The output in this example is a sequence of tuples containing the frame time and the displacement value.
The example uses nodal history data output. If the analysis requested history output from an element, the
output database would contain one HistoryRegion object and one HistoryPoint object for each integration
point.

9.5.9 An example of reading node and element information from an
output database

The following script illustrates how you can open the output database used by the Abaqus/CAE
Visualization module tutorial output database and print out some nodal and element information. Use
the following commands to retrieve the example script and the tutorial output database:

abaqus fetch job=odbElementConnectivity
abaqus fetch job=viewer_tutorial

odbElementConnectivity.py
Script to extract node and element information.
#
Command line argument is the path to the output
database.
#
For each node of each part instance:
Print the node label and the nodal coordinates.
#
For each element of each part instance:
Print the element label, the element type, the

9–22

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

number of nodes, and the element connectivity.

from odbAccess import *
import sys

Check that an output database was specified.

if len(sys.argv) != 2:
print 'Error: you must supply the name \

of an odb on the command line'
sys.exit(1)

Get the command line argument.

odbPath = sys.argv[1]

Open the output database.

odb = openOdb(path=odbPath)

assembly = odb.rootAssembly

Model data output

print 'Model data for ODB: ', odbPath

For each instance in the assembly.

numNodes = numElements = 0

for name, instance in assembly.instances.items():

n = len(instance.nodes)
print 'Number of nodes of instance %s: %d' % (name, n)
numNodes = numNodes + n

print
print 'NODAL COORDINATES'

For each node of each part instance
print the node label and the nodal coordinates.

9–23

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

Three-dimensional parts include X-, Y-, and Z-coordinates.
Two-dimensional parts include X- and Y-coordinates.

if instance.embeddedSpace == THREE_D:
print ' X Y Z'
for node in instance.nodes:

print node.coordinates
else:

print ' X Y'
for node in instance.nodes:

print node.coordinates

For each element of each part instance
print the element label, the element type, the
number of nodes, and the element connectivity.

n = len(instance.elements)
print 'Number of elements of instance ', name, ': ', n
numElements = numElements + n

print 'ELEMENT CONNECTIVITY'
print ' Number Type Connectivity'
for element in instance.elements:

print '%5d %8s' % (element.label, element.type),
for nodeNum in element.connectivity:

print '%4d' % nodeNum,
print

print
print 'Number of instances: ', len(assembly.instances)
print 'Total number of elements: ', numElements
print 'Total number of nodes: ', numNodes

9.5.10 An example of reading field data from an output database

The following script combines many of the commands you have already seen and illustrates how you read
model data and field output data from the output database used by the Abaqus/CAE Visualization module
tutorial. Use the following commands to retrieve the example script and the tutorial output database:

abaqus fetch job=odbRead

9–24

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

abaqus fetch job=viewer_tutorial

odbRead.py
A script to read the Abaqus/CAE Visualization module tutorial
output database and read displacement data from the node at
the center of the hemispherical punch.

from odbAccess import *

odb = openOdb(path='viewer_tutorial.odb')

Create a variable that refers to the
last frame of the first step.

lastFrame = odb.steps['Step-1'].frames[-1]

Create a variable that refers to the displacement 'U'
in the last frame of the first step.

displacement = lastFrame.fieldOutputs['U']

Create a variable that refers to the node set 'PUNCH'
located at the center of the hemispherical punch.
The set is associated with the part instance 'PART-1-1'.

center = odb.rootAssembly.instances['PART-1-1'].\
nodeSets['PUNCH']

Create a variable that refers to the displacement of the node
set in the last frame of the first step.

centerDisplacement = displacement.getSubset(region=center)

Finally, print some field output data from each node
in the node set (a single node in this example).

for v in centerDisplacement.values:
print 'Position = ', v.position,'Type = ',v.type
print 'Node label = ', v.nodeLabel
print 'X displacement = ', v.data[0]
print 'Y displacement = ', v.data[1]
print 'Displacement magnitude =', v.magnitude

9–25

Abaqus ID:
Printed on:

WRITING TO AN OUTPUT DATABASE

odb.close()

The resulting output is

Position = NODAL Type = VECTOR
Node label = 1000
X displacement = -8.29017850095e-34
Y displacement = -76.4554519653
Displacement magnitude = 76.4554519653

9.6 Writing to an output database

You can write your own data to an output database, and you can use Abaqus/CAE to view the data.
Writing to an output database is very similar to reading from an output database. When you open an
existing database, the Odb object contains all the objects found in the output database, such as instances,
steps, and field output data. In contrast, when you are writing to a new output database, these objects do
not exist. As a result you must use a constructor to create the objects. For example, you use the Part
constructor to create a Part object, the Instance constructor to create an OdbInstance object, and the
Step constructor to create an OdbStep object.

After you create an object, you use methods of the objects to enter or modify the data associated
with the object. For example, if you are creating an output database, you first create an Odb object.
You then use the Part constructor to create a part. After creating the part, you use the addNodes and
addElements methods of the Part object to add nodes and elements, respectively. Similarly, you use
the addData method of the FieldOutput object to add field output data to the output database. After
creating an output database, you should use the save method on the Odb object to save the output
database.

The example script in “Creating an output database,” Section 9.10.2, also illustrates how you can
write to an output database.

The following topics are covered:

• “Creating a new output database,” Section 9.6.1
• “Writing model data,” Section 9.6.2
• “Writing results data,” Section 9.6.3
• “Writing field output data,” Section 9.6.4
• “Default display properties,” Section 9.6.5
• “Writing history output data,” Section 9.6.6

9–26

Abaqus ID:
Printed on:

WRITING TO AN OUTPUT DATABASE

9.6.1 Creating a new output database
You use the Odb constructor to create a new, empty Odb object.

odb = Odb(name='myData',
analysisTitle='derived data',
description='test problem',
path='testWrite.odb')

For a full description of the Odb command, see “Odb object,” Section 34.1 of the Abaqus Scripting
Reference Guide. Abaqus creates the RootAssembly object when you create or open an output database.

You use the save method to save the output database.

odb.save()

For a full description of the save command, see “save,” Section 34.1.4 of the Abaqus Scripting
Reference Guide.

9.6.2 Writing model data
To define the geometry of your model, you first create the parts that are used by the model and then you
add nodes and elements to the parts. You then define the assembly by creating instances of the parts. If
the output database already contains results data, you should not change the geometry of the model. This
is to ensure that the results remain synchronized with the model.

Part

If the part was created by Abaqus/CAE, the description of the native Abaqus/CAE geometry
is stored in the model database, but it is not stored in the output database. A part is stored in
an output database as a collection of nodes, elements, surfaces, and sets. You use the Part
constructor to add a part to the Odb object. You can specify the type of the part; however, only
DEFORMABLE_BODY is currently supported. For example,

part1 = odb.Part(name='part-1',
embeddedSpace=THREE_D, type=DEFORMABLE_BODY)

For a full description of the Part constructor, see “OdbPart object,” Section 34.20 of the Abaqus
Scripting Reference Guide. The new Part object is empty and does not contain geometry. After you
create the Part object, you add nodes and elements.

You use the addNodes method to add nodes by defining node labels and coordinates. You
can also define an optional node set. For example,

nodeData = ((1, 1,0,0), (2, 2,0,0),
(3, 2,1,0.1), (4, 1,1,0.1),
(5, 2,-1,-0.1), (6, 1,-1,-0.1),)

9–27

Abaqus ID:
Printed on:

WRITING TO AN OUTPUT DATABASE

part1.addNodes(nodeData=nodeData, nodeSetName='nset-1')

For a full description of the addNodes command, see “addNodes,” Section 34.20.4 of the Abaqus
Scripting Reference Guide.

After you have created nodes, you can use the NodeSetFromNodeLabels constructor to
create a node set from the node labels. For more information, see “NodeSetFromNodeLabels,”
Section 34.24.2 of the Abaqus Scripting Reference Guide.

Similarly, you use the addElements method to add elements to the part using a sequence
of element labels, element connectivity, and element type. You can also define an optional element
set and an optional section category. For example,

Set up the section categories

sCat = odb.SectionCategory(name='S5',
description='Five-Layered Shell')

spBot = sCat.SectionPoint(number=1,
description='Bottom')

spMid = sCat.SectionPoint(number=3,
description='Middle')

spTop = sCat.SectionPoint(number=5,
description='Top')

elementData = ((1, 1,2,3,4),
(2, 6,5,2,1),)

part1.addElements(elementData=elementData, type='S4',
elementSetName='eset-1', sectionCategory=sCat)

For a full description of the addElements command, see “addElements,” Section 34.20.2 of the
Abaqus Scripting Reference Guide.

The RootAssembly object

The root assembly is created when you create the output database. You access the RootAssembly
object using the same syntax as that used for reading from an output database.

odb.rootAssembly

You can create both instances and regions on the RootAssembly object.

Part instances

You use the Instance constructor to create part instances of the parts you have already defined
using the Part constructor. For example,

9–28

Abaqus ID:
Printed on:

WRITING TO AN OUTPUT DATABASE

a = odb.rootAssembly
instance1 = a.Instance(name='part-1-1', object=part1)

You can also supply an optional local coordinate system that specifies the rotation and translation
of the part instance. You can add nodes and elements only to a part; you cannot add elements
and nodes to a part instance. As a result, you should create the nodes and elements that define the
geometry of a part before you instance the part. For a full description of the Instance command,
see “OdbInstance object,” Section 34.16 of the Abaqus Scripting Reference Guide.

Regions

Region commands are used to create sets from element labels, node labels, and element faces. You
can create a set on a part, part instance, or the root assembly. Node and element labels are unique
within an instance but not within the assembly. As a result, a set on the root assembly requires
the names of the part instances associated with the nodes and elements. You can also use region
commands to create surfaces. For example,

An element set on an instance
eLabels = [9,99]
elementSet = instance1.ElementSetFromElementLabels(

name='elsetA',elementLabels=eLabels)
A node set on the rootAssembly
nodeLabels = (5,11)
instanceName = 'part-1-1'
nodeSet = assembly.NodeSetFromNodeLabels(

name='nodesetRA',((instanceName,nodeLabels),))

The region commands are described in Chapter 45, “Region commands,” of the Abaqus
Scripting Reference Guide.

Materials

You use the Material object to list material properties.
Materials are stored in the materials repository under the Odb object.

To create an isotropic elastic material, with a Young’s modulus of 12000.0 and an effective
Poisson’s ratio of 0.3 in the output database:

materialName = "Elastic Material"
material_1 = odb.Material(name=materialName)
material_1.Elastic(type=ISOTROPIC,table=((12000,0.3),))

For more information, see Chapter 29, “Material commands,” of the Abaqus Scripting
Reference Guide.

Sections

You use the Section object to create sections and profiles.

9–29

Abaqus ID:
Printed on:

WRITING TO AN OUTPUT DATABASE

Sections are stored in the sections repository under the Odb object.
The following code creates a homogeneous solid section object. A Material object must be

present before creating a Section object. An exception is thrown if the material does not exist.

sectionName = 'Homogeneous Solid Section'
mySection = odb.HomogeneousSolidSection(

name = sectionName,
material = materialName,
thickness = 2.0)

To create a circular beam profile object in the output database:

profileName = "Circular Profile"
radius = 10.00
odb.CircularProfile(name = profileName, r = radius)

Section assignments

You use the SectionAssignment object to assign sections and their associated material properties
to regions of the model. SectionAssignment objects are members of the Odb object. For a full
description of the assignSection method, see “assignSection,” Section 34.16.7 of the Abaqus
Scripting Reference Guide.
All Elements in an Abaqus analysis need to be associated with section and material properties.
Section assignments provide the relationship between elements in an Instance object and their
section properties. The section properties include the associated material name. To create an
element set and assign a section:

elLabels = (1,2)
elset = instance.ElementSetFromElementLabels(
name=materialName, elementLabels=elLabels)
instance.assignSection(region=elset,section=section)

9.6.3 Writing results data

To write results data to the output database, you first create the Step objects that correspond to each step
of the analysis. If you are writing field output data, you also create the Frame objects that will contain
the field data. History output data are associated with Step objects.

Steps

You use the Step constructor to create a results step for time, frequency, or modal domain results.
For example,

step1 = odb.Step(name='step-1',
description='', domain=TIME, timePeriod=1.0)

9–30

Abaqus ID:
Printed on:

WRITING TO AN OUTPUT DATABASE

The Step constructor has an optional previousStepName argument that specifies the step after
which this step must be inserted in the steps repository. For a full description of the Step
command, see “Step,” Section 34.25.1 of the Abaqus Scripting Reference Guide.

Frames

You use the Frame constructor to create a frame for field output. For example,

frame1 = step1.Frame(incrementNumber=1,
frameValue=0.1, description='')

For a full description of the Frame command, see “Frame,” Section 34.15.3 of the Abaqus Scripting
Reference Guide.

9.6.4 Writing field output data
A FieldOutput object contains a “cloud of data values” (e.g., stress tensors at each integration point for
all elements). Each data value has a location, type, and value. You add field output data to a Frame object
by first creating a FieldOutput object using the FieldOutput constructor and then adding data to the
FieldOutput object using the addData method. For example,

Create the part and the instance.

part1 = odb.Part(name='part-1',
embeddedSpace=THREE_D, type=DEFORMABLE_BODY)

a = odb.rootAssembly
instance1 = a.Instance(name='part-1-1', object=part1)

Write nodal displacements

uField = frame1.FieldOutput(name='U',
description='Displacements', type=VECTOR)

Create the node labels.

nodeLabelData = (1, 2, 3, 4, 5, 6)

Each set of data corresponds to a node label.

dispData = ((1,2,3),
(4,5,6),
(7,8,9),

9–31

Abaqus ID:
Printed on:

WRITING TO AN OUTPUT DATABASE

(10,11,12),
(13, 14, 15),
(16,17,18))

Add nodal data to the FieldOutput object using the
node labels and the nodal data for this part instance.

uField.addData(position=NODAL, instance=instance1,
labels=nodeLabelData, data=dispData)

Make this the default deformed field for this step.

step1.setDefaultDeformedField(uField)

For a full description of theFieldOutput constructor, see “FieldOutput,” Section 34.7.1 of the Abaqus
Scripting Reference Guide.

The type argument to the FieldOutput constructor describes the type of the data—tensor, vector,
or scalar. The properties of the different tensor types are:

Full tensor

A tensor that has six components and three principal values. Full three-dimensional rotation of the
tensor is possible.

Three-dimensional surface tensor

A tensor that has only three in-plane components and two principal values. Full three-dimensional
rotation of the tensor components is possible.

Three-dimensional planar tensor

A tensor that has three in-plane components, one out-of-plane component, and three principal
values. Full three-dimensional rotation of the tensor components is possible.

Two-dimensional surface tensor

A tensor that has only three in-plane components and two principal values. Only in-plane rotation
of the tensor components is possible.

Two-dimensional planar tensor

A tensor that has three in-plane components, one out-of-plane component, and three principal
values. Only in-plane rotation of the tensor components is possible.

The valid components and invariants for the different data types are given in Table 9–1.

9–32

Abaqus ID:
Printed on:

WRITING TO AN OUTPUT DATABASE

Table 9–1 Valid components and invariants for Abaqus data types.

Data type Components Invariants

SCALAR

VECTOR 1, 2, 3 MAGNITUDE

TENSOR_3D_FULL 11, 22, 33, 12, 13, 23 MISES, TRESCA, PRESS, INV3,
MAX_PRINCIPAL, MID_PRINCIPAL,
MIN_PRINCIPAL

TENSOR_3D_SURFACE 11, 22, 12 MAX_PRINCIPAL, MIN_PRINCIPAL,
MAX_INPLANE_PRINCIPAL,
MIN_INPLANE_PRINCIPAL

TENSOR_3D_PLANAR 11, 22, 33, 12 MISES, TRESCA, PRESS,
INV3, MAX_PRINCIPAL,
MID_PRINCIPAL, MIN_PRINCIPAL,
MAX_INPLANE_PRINCIPAL,
MIN_INPLANE_PRINCIPAL,
OUTOFPLANE_PRINCIPAL

TENSOR_2D_SURFACE 11, 22, 12 MAX_PRINCIPAL, MIN_PRINCIPAL,
MAX_INPLANE_PRINCIPAL,
MIN_INPLANE_PRINCIPAL

TENSOR_2D_PLANAR 11, 22, 33, 12 MISES, TRESCA, PRESS,
INV3, MAX_PRINCIPAL,
MID_PRINCIPAL, MIN_PRINCIPAL,
MAX_INPLANE_PRINCIPAL,
MIN_INPLANE_PRINCIPAL,
OUTOFPLANE_PRINCIPAL

For example, the following statements add element data to the FieldOutput object:

Write stress tensors (output only available at
top/bottom section points)
The element defined above (S4) has 4 integration
points. Hence, there are 4 stress tensors per element.
Abaqus creates one layer of section points each
time the script calls the addData method.

elementLabelData = (1, 2)

9–33

Abaqus ID:
Printed on:

WRITING TO AN OUTPUT DATABASE

topData = ((1.,2.,3.,4.), (1.,2.,3.,4.),
(1.,2.,3.,4.), (1.,2.,3.,4.),
(1.,2.,3.,4.), (1.,2.,3.,4.),
(1.,2.,3.,4.), (1.,2.,3.,4.),

)
bottomData = ((1.,2.,3.,4.), (1.,2.,3.,4.),

(1.,2.,3.,4.), (1.,2.,3.,4.),
(1.,2.,3.,4.), (1.,2.,3.,4.),
(1.,2.,3.,4.), (1.,2.,3.,4.),

)

transform = ((1.,0.,0.), (0.,1.,0.), (0.,0.,1.))

sField = frame1.FieldOutput(name='S',
description='Stress', type=TENSOR_3D_PLANAR,
componentLabels=('S11', 'S22', 'S33',
'S12'), validInvariants=(MISES,))

sField.addData(position=INTEGRATION_POINT,
sectionPoint=spTop, instance=instance1,
labels=elementLabelData, data=topData,
localCoordSystem=transform)

sField.addData(position=INTEGRATION_POINT,
sectionPoint=spBot, instance=instance1,
labels=elementLabelData, data=bottomData,
localCoordSystem=transform)

For this step, make this the default field for
visualization.

step1.setDefaultField(sField)

For a full description of the addData command, see “addData,” Section 34.7.3 of the Abaqus Scripting
Reference Guide.

As a convenience, localCoordSystem can be a single transform or a list of transforms. If
localCoordSystem is a single transform, it applies to all values. If localCoordSystem is a list of
transforms, the number of items in the list must match the number of data values.

9.6.5 Default display properties

The previous examples show how you can use commands to set the default field variable and deformed
field variable. Abaqus/CAE uses the default field variable setting to determine the variable to display in

9–34

Abaqus ID:
Printed on:

WRITING TO AN OUTPUT DATABASE

a contour plot; for example, stress. Similarly, the default deformed field variable determines the variable
that distinguishes a deformed plot from an undeformed plot. Typically, you will use displacement for the
default deformed field variable; you cannot specify an invariant or a component. The default variable
settings apply for each frame in the step. For example, the following statements use the deformation ’U’
as the default setting for both field variable and deformed field variable settings during a particular step:

field=odb.steps['impact'].frames[1].fieldOutputs['U']
odb.steps['impact'].setDefaultField(field)
odb.steps['impact'].setDefaultDeformedField(field)

You can set a different default field variable and deformed field variable for different steps. You
will need to use a loop to set the defaults for each step. For example,

for step in odb.steps.values():
step.setDefaultField(field)

9.6.6 Writing history output data
History output is output defined for a single point or for values calculated for a portion of the model as
a whole, such as energy. Depending on the type of output expected, the historyRegions repository
contains data from one of the following:

• a node
• an element, or a location in an element
• a region

Note: History data from an analysis cannot contain multiple points.

The output from all history requests that relate to a specified point is collected in one HistoryRegion
object. You use the HistoryPoint constructor to create the point. For example,

point1 = HistoryPoint(element=instance1.elements[0])

For a full description of the HistoryPoint command, see “HistoryPoint,” Section 34.10.1 of the
Abaqus Scripting Reference Guide.

You then use the HistoryRegion constructor to create a HistoryRegion object:

step1 = odb.Step(name='step-1',
description='', domain=TIME, timePeriod=1.0)

h1 = step1.HistoryRegion(name='my history',
description='my stuff',point=point1)

For a full description of the HistoryRegion command, see “HistoryRegion,” Section 34.11.1 of the
Abaqus Scripting Reference Guide.

You use the HistoryOutput constructor to add variables to the HistoryRegion object.

9–35

Abaqus ID:
Printed on:

WRITING TO AN OUTPUT DATABASE

h1_u1 = h1.HistoryOutput(name='U1',
description='Displacement', type=SCALAR)

h1_rf1 = h1.HistoryOutput(name='RF1',
description='Reaction Force', type=SCALAR)

Similarly for Step 2

step2 = odb.Step(name='step-2',
description='', domain=TIME, timePeriod=1.0)

h2 = step2.HistoryRegion(name='my history',
description='my stuff', point=point1)

h2_u1 = h2.HistoryOutput(name='U1',
description='Displacement', type=SCALAR)

h2_rf1 = h2.HistoryOutput(name='RF1',
description='Reaction Force', type=SCALAR)

Each HistoryOutput object contains a sequence of (frameValue, value) sequences. The
HistoryOutput object has a method (addData) for adding data. Each data item is a sequence of
(frameValue, value). In a time domain analysis (domain=TIME) the sequence is (stepTime, value). In
a frequency domain analysis (domain=FREQUENCY) the sequence is (frequency, value). In a modal
domain analysis (domain=MODAL) the sequence is (mode, value).

You add the data values as time and data tuples. The number of data items must correspond to the
number of time items. For example,

timeData = (0.0, 0.1, 0.3, 1.0)
u1Data = (0.0, 0.0004, 0.0067, 0.0514)
rf1Data = (27.456, 32.555, 8.967, 41.222)

h1_u1.addData(frameValue=timeData, value=u1Data)
h1_rf1.addData(frameValue=timeData, value=rf1Data)

similar for step2

timeData = (1.2, 1.9, 3.0, 4.0)
u1Data = (0.8, 0.9, 1.3, 1.5)
rf1Data = (0.9, 1.1, 1.3, 1.5)

h2_u1.addData(frameValue=timeData, value=u1Data)
h2_rf1.addData(frameValue=timeData, value=rf1Data)

9–36

Abaqus ID:
Printed on:

COMPUTATIONS WITH Abaqus RESULTS

9.7 Exception handling in an output database

Python exception handling is described in “Exception handling,” Section 5.5.4. Python exception
handling in the output database is identical to that in the model database. The exceptions thrown are of
type OdbError; for example, the following script catches exceptions thrown when the python interface
in not successful in opening an output database:

invalidOdbName = "invalid.odb"
try:

myOdb = openOdb(invalidOdbName)
except OdbError,e:

print 'Abaqus error message: %s' % str(e)
print 'customized error message here'

except:
print 'Unknown Exception. '

9.8 Computations with Abaqus results

The following topics are covered:

• “Rules for the mathematical operations,” Section 9.8.1
• “Valid mathematical operations,” Section 9.8.2
• “Envelope calculations,” Section 9.8.3

9.8.1 Rules for the mathematical operations
Mathematical operations are supported for FieldOutput, FieldValue, and HistoryOutput objects. These
operators allow you to perform linear superposition of Abaqus results or to create more complex derived
results from Abaqus results.

The following rules apply:

• The operations are performed on the components of a tensor or vector.
• The invariants are computed from the component values. For example, taking the absolute value
of a tensor can result in negative values of the pressure invariant.

• Operations between FieldOutput, FieldValue, and HistoryOutput objects are not supported.
• Multiplication and division are not supported between two vector objects nor between two tensor
objects.

9–37

Abaqus ID:
Printed on:

COMPUTATIONS WITH Abaqus RESULTS

• The types in an expression must be compatible. For example,
– A vector cannot be added to a tensor.

– A three-dimensional surface tensor cannot be added to a three-dimensional planar tensor.

– INTEGRATION_POINT data cannot be added to ELEMENT_NODAL data.

• If the fields in the expression were obtained using the getSubsetmethod, the same getSubset
operations must have been applied in the same order to obtain each field.

• Arguments to the trigonometric functions must be in radians.
• Operations on tensors are performed in the local coordinate system, if it is available. Otherwise
the global system is used. Abaqus assumes that the local coordinate systems are consistent for
operations involving more than one tensor.

• Operations between FieldValue objects associated with different locations in the model are allowed
only if the data types are the same. If the locations in the model differ, the FieldValue computed
will not be associated with a location. If the local coordinate systems of the FieldValue objects are
not the same, the local coordinate systems of both fieldValues will be disregarded and the fieldValue
computed will have no local coordinate system.

• The operations will not be performed on the conjugate data (the imaginary portion of a complex
result).

The FieldOutput operations are significantly more efficient than the FieldValue operators. You can
save the computed FieldOutput objects with the following procedure (see the example, “Computations
with FieldOutput objects,” Section 9.10.4):

• Create a new FieldOutput object in the output database.
• Use the addData method to add the new computed field objects to the new FieldOutput object.

9.8.2 Valid mathematical operations
Table 9–2 describes the abbreviations that are used in mathematical operations.

Table 9–2 Abbreviations.

Abbreviation Allowable values

all FieldOutput objects, FieldValue objects, HistoryVariable
objects, or floating point numbers

float floating point numbers

FO FieldOutput objects

FV FieldValue objects

HO HistoryOutput objects

9–38

Abaqus ID:
Printed on:

COMPUTATIONS WITH Abaqus RESULTS

Table 9–3 shows the valid operations on FieldOutput objects.

Table 9–3 Valid operations.

Symbol Operation Return
value

all + float addition all

FO + FO FO

FV + FV FV

HO + HO HO

-all unary negation all

all - float subtraction all

FO - FO FO

FV - FV FV

FO * FO (only if FO is a
scalar)

multiplication FO

all * float all

FO / FO (only if FO is a
scalar)

division FO

all / float all

abs(all) absolute value all

acos(all) arccosine all

asin(all) arcsine all

atan(all) arctangent all

cos(all) cosine all

degreeToRadian (all) convert degrees to
radians

all

exp(all) natural exponent all

exp10(all) base 10 exponent all

log(all) natural logarithm all

log10(all) base 10 logarithm all

9–39

Abaqus ID:
Printed on:

COMPUTATIONS WITH Abaqus RESULTS

Symbol Operation Return
value

float ** float raise to a power all

power(FO, float) FO

power(FV, float) FV

power(HO, float) HO

radianToDegree (all) convert radian to degree all

sin(all) sine all

sqrt(all) square root all

tan(all) tangent all

complexMagnitude(FO) magnitude of the
complex field output

FO

complexPhase(FO) phase of the complex
field output

FO

complexReal(FO) real part of the complex
field output

FO

complexImag(FO) imaginary part of the
complex field output

FO

9.8.3 Envelope calculations

You use envelope calculations to retrieve the extreme value for an output variable over a number of
fields. Envelope calculations are especially useful for retrieving the extreme values over a number of
load cases.

The following operators consider a list of fields and perform the envelope calculation:

(env, lcIndex) = maxEnvelope([field1, field2, ...])
(env, lcIndex) = minEnvelope([field1, field2, ...])

(env, lcIndex) = maxEnvelope([field1, field2, ...],
invariant)

(env, lcIndex) = minEnvelope([field1, field2, ...],
invariant)

(env, lcIndex) = maxEnvelope([field1, field2, ...],

9–40

Abaqus ID:
Printed on:

COMPUTATIONS WITH Abaqus RESULTS

componentLabel)
(env, lcIndex) = minEnvelope([field1, field2, ...],

componentLabel)

The envelope commands return two FieldOutput objects.

• The first object contains the requested extreme values.
• The second object contains the indices of the fields for which the extreme values were found. The
indices derive from the order in which you supplied the fields to the command.

The optional invariant argument is a Symbolic Constant specifying the invariant to be used when
comparing vectors or tensors. The optional componentLabel argument is a odb_String specifying the
component of the vector or tensor to be used for selecting the extreme value.

The following rules apply to envelope calculations:

• Abaqus compares the values using scalar data. If you are looking for the extreme value of a vector
or a tensor, you must supply an invariant or a component label for the selection of the extreme value.
For example, for vectors you can supply theMAGNITUDE invariant and for tensors you can supply
the MISES invariant.

• The fields being compared must be similar. For example,
– VECTOR and TENSOR_3D_FULL fields cannot appear in the same list.

– The output region of all the fields must be the same. All the fields must apply to the whole
model, or all the fields must apply to the same set.

9.8.4 Transformation of results
Transformations of vector and tensor fields are supported for rectangular, cylindrical, and spherical
coordinate systems. The coordinate systems can be fixed or model based. Model-based coordinate
systems refer to nodes for position and orientation. Abaqus uses the coordinates of the deformed state
to determine a systems origin and orientation for model-based coordinate systems. Transformations
that use a model-based coordinate system can account for large displacements of both the coordinate
system and the structure.

The steps required to transform results are (see also the example “Transformation of field results,”
Section 9.10.9):

• Create the coordinate system.
• Retrieve the field from the database.
• Use the fieldOutput.getTransformedFieldmethod to obtain a new field with the results
in the specified coordinate system.

• For large displacement of the structure and coordinate system, you must also retrieve the
displacement field at the frame. You must compute this displacement field for the whole model to
ensure that the required displacement information is available.

9–41

Abaqus ID:
Printed on:

IMPROVING THE EFFICIENCY OF YOUR SCRIPTS

The following rules apply to the transformation of results:

• Beams, truss, and axisymmetric shell element results will not be transformed.
• The component directions 1, 2, and 3 of the transformed results will correspond to the system
directions X, Y, and Z for rectangular coordinate systems; R, , and Z for cylindrical coordinate
systems; and R, , and for spherical coordinate systems.

Note: Stress results for three-dimensional continuum elements transformed into a cylindrical
system would have the hoop stress in S22, which is consistent with the coordinate system axis
but inconsistent with the stress state for a three-dimensional axisymmetric elements having hoop
stress in S33.

• When you are transforming a tensor, the location or integration point always takes into account the
deformation. The location of the coordinate system depends on the model, as follows:

– If the system is fixed, the coordinate system is fixed.

– If the system is model based, you must supply a displacement field that determines the
instantaneous location and orientation of the coordinate system.

• Abaqus will perform transformations of tensor results for shells, membranes, and planar elements
as rotations of results about the element normal at the element result location. The element normal
is the normal computed for the frame associated with the field by Abaqus, and you cannot redefine
the normal. Abaqus defines the location of the results location from the nodal locations. You
specify optional arguments if you want to use the deformed nodal locations to transform results.
For rectangular, cylindrical, and spherical coordinate systems the second component direction for
the transformed results will be determined by one of the following:

– The Y-axis in a rectangular coordinate system.

– The -axis in a cylindrical coordinate system.

– The -axis in a spherical coordinate system.

– A user-specified datum axis projected onto the element plane.

If the coordinate system used for projection and the element normal have an angle less than the
specified tolerance (the default is 30°), Abaqus will use the next axis and generate a warning.

9.9 Improving the efficiency of your scripts

If you are accessing large amounts of data from an output database, you should be aware of potential
inefficiencies in your script and techniques that will help to speed up your scripts.

• “Creating objects to hold temporary variables,” Section 9.9.1

9–42

Abaqus ID:
Printed on:

IMPROVING THE EFFICIENCY OF YOUR SCRIPTS

9.9.1 Creating objects to hold temporary variables
To improve the efficiency of scripts that access an output database, you should create objects that will
be used to hold temporary variables that are accessed multiple times while the script is executing. For
example, if the script accesses the temporary variable while inside a loop that is executed many times,
creating an object to hold the variable will speed up your script significantly.

The following example examines the von Mises stress in each element during a particular frame of
field output. If the stress is greater than a certain maximum value, the script prints the strain components
for the element.

stressField = frame.fieldOutputs['MISES']
strainField = frame.fieldOutputs['LE']
count = 0
for v in stressField.values:

if v.mises > stressCap:
if v.integrationPoint:

print 'Element label = ', v.elementLabel, \
'Integration Point = ', v.integrationPoint

else:
print 'Element label = ', v.elementLabel

for component in strainField.values[count].data:
print '%-10.5f' % component,

print
count = count + 1

In this example every time the script accesses a strain component from strainField.value, Abaqus
must reconstruct the sequence of FieldValue objects. This reconstruction could result in a significant
performance degradation, particularly for a large model.

A slight change in the script greatly improves its performance, as shown in the following example:

stressField = frame.fieldOutputs['MISES']
strainFieldValues = frame.fieldOutputs['LE'].values
count = 0
for v in stressField.values:

if v.mises > stressCap:
if v.integrationPoint:

print 'Element label = ', v.elementLabel, \
'Integration Point = ', v.integrationPoint

else:
print 'Element label = ', v.elementLabel

for component in strainFieldValues[count].data:
print '%-10.5f' % component,

9–43

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

print
count = count + 1

The second script replaces the statement strainField = frame.fieldOutputs[’LE’]
with the statement strainFieldValues = frame.fieldOutputs[’LE’].values. As a
result, Abaqus does not need to reconstruct the sequence of FieldValue objects each time the script
accesses a strain component.

Similarly, if you expect to retrieve more than one frame from an output database, you should create
a temporary variable that holds the entire frame repository. You can then provide the logic to retrieve the
desired frames from the repository and avoid recreating the repository each time. For example, executing
the following statements could be very slow:

for i in range(len(odb.steps[name].frames)-1):
frame[i] = odb.steps[name].frames[i]

Creating a temporary variable to hold the frame repository provides the same functionality and speeds
up the process:

frameRepository = odb.steps[name].frames
for i in range(len(frameRepository)-1):

frame[i] = frameRepository[i]

Such a potential loss of performance will not be a problem when accessing a load case frame. Accessing
a load case frame does not result in the creation of a frame repository and, thus, does not suffer from a
corresponding loss of performance.

9.10 Example scripts that access data from an output database

The following examples illustrate how you use the output database commands to access data from an
output database:

• “Finding the maximum value of von Mises stress,” Section 9.10.1
• “Creating an output database,” Section 9.10.2
• “An Abaqus Scripting Interface version of FPERT,” Section 9.10.3
• “Computations with FieldOutput objects,” Section 9.10.4
• “Computations with FieldValue objects,” Section 9.10.5
• “Computations with HistoryOutput objects,” Section 9.10.6
• “Creating a new load combination from different load cases,” Section 9.10.7
• “Stress range for multiple load cases,” Section 9.10.8
• “Transformation of field results,” Section 9.10.9
• “Viewing the analysis of a meshed beam cross-section,” Section 9.10.10

9–44

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

• “Using infinite elements to compute and view the results of an acoustic far-field analysis,”
Section 9.10.11

• “An Abaqus Scripting Interface version of FELBOW,” Section 9.10.12
In addition, the Abaqus Scripting Interface examples, “Reading from an output database,” Section 3.2,
and “Investigating the skew sensitivity of shell elements,” Section 8.3, illustrate how to read data from
an output database.

9.10.1 Finding the maximum value of von Mises stress
This example illustrates how you can iterate through an output database and search for the maximum
value of von Mises stress. The script opens the output database specified by the first argument on the
command line and iterates through the following:

• Each step.
• Each frame in each step.
• Each value of von Mises stress in each frame.

In addition, you can supply an optional assembly element set argument from the command line, in which
case the script searches only the element set for the maximum value of von Mises stress.

The following illustrates how you can run the example script from the system prompt. The script
will search the element set ALL ELEMENTS in the viewer tutorial output database for the maximum
value of von Mises stress:

abaqus python odbMaxMises.py -odb viewer_tutorial.odb
-elset “ ALL ELEMENTS”

Note: If a command line argument is a String that contains spaces, some systems will interpret the String
correctly only if it is enclosed in double quotation marks. For example, “ ALL ELEMENTS”.

You can also run the example with only the -help parameter for a summary of the usage.
Use the following commands to retrieve the example script and the viewer tutorial output database:

abaqus fetch job=odbMaxMises.py
abaqus fetch job=viewer_tutorial

"""
odbMaxMises.py
Code to determine the location and value of the maximum
von-mises stress in an output database.
Usage: abaqus python odbMaxMises.py -odb odbName

-elset(optional) elsetName
Requirements:
1. -odb : Name of the output database.
2. -elset : Name of the assembly level element set.

9–45

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

Search will be done only for element belonging
to this set. If this parameter is not provided,
search will be performed over the entire model.

3. -help : Print usage
"""

#~~~
from odbAccess import *
from sys import argv,exit
#~~~

def rightTrim(input,suffix):
if (input.find(suffix) == -1):

input = input + suffix
return input

#~~~

def getMaxMises(odbName,elsetName):
""" Print max mises location and value given odbName

and elset(optional)
"""
elset = elemset = None
region = "over the entire model"
""" Open the output database """
odb = openOdb(odbName)
assembly = odb.rootAssembly

""" Check to see if the element set exists
in the assembly

"""
if elsetName:

try:
elemset = assembly.elementSets[elsetName]
region = " in the element set : " + elsetName;

except KeyError:
print 'An assembly level elset named %s does' \

'not exist in the output database %s' \
% (elsetName, odbName)

odb.close()
exit(0)

9–46

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

""" Initialize maximum values """
maxMises = -0.1
maxElem = 0
maxStep = "_None_"
maxFrame = -1
Stress = 'S'
isStressPresent = 0
for step in odb.steps.values():

print 'Processing Step:', step.name
for frame in step.frames:

allFields = frame.fieldOutputs
if (allFields.has_key(Stress)):

isStressPresent = 1
stressSet = allFields[Stress]
if elemset:

stressSet = stressSet.getSubset(
region=elemset)

for stressValue in stressSet.values:
if (stressValue.mises > maxMises):

maxMises = stressValue.mises
maxElem = stressValue.elementLabel
maxStep = step.name
maxFrame = frame.incrementNumber

if(isStressPresent):
print 'Maximum von Mises stress %s is %f in element %d'%(

region, maxMises, maxElem)
print 'Location: frame # %d step: %s '%(maxFrame,maxStep)

else:
print 'Stress output is not available in' \

'the output database : %s\n' %(odb.name)

""" Close the output database before exiting the program """
odb.close()

#==
S T A R T
#
if __name__ == '__main__':

odbName = None
elsetName = None

9–47

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

argList = argv
argc = len(argList)
i=0
while (i < argc):

if (argList[i][:2] == "-o"):
i += 1
name = argList[i]
odbName = rightTrim(name,".odb")

elif (argList[i][:2] == "-e"):
i += 1
elsetName = argList[i]

elif (argList[i][:2] == "-h"):
print __doc__
exit(0)

i += 1
if not (odbName):

print ' **ERROR** output database name is not provided'
print __doc__
exit(1)

getMaxMises(odbName,elsetName)

9.10.2 Creating an output database
The following example illustrates how you can use the Abaqus Scripting Interface commands to do the
following:

1. Create a new output database.

2. Add model data.

3. Add field data.

4. Add history data.

5. Read history data.

6. Save the output database.

Use the following command to retrieve the example script:

abaqus fetch job=odbWrite

"""odbWrite.py
Script to create an output database and add model,

9–48

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

field, and history data. The script also reads
history data, performs an operation on the data, and writes
the result back to the output database.
usage: abaqus python odbWrite.py

"""
from odbAccess import *
from odbMaterial import *
from odbSection import *
from abaqusConstants import *

def createODB():

Create an ODB (which also creates the rootAssembly)
odb = Odb(name='simpleModel',

analysisTitle='ODB created with Python ODB API',
description='example illustrating Python ODB API ',
path='odbWritePython.odb')

create few materials
materialName = "Elastic Material"
material_1 = odb.Material(name=materialName)
material_1.Elastic(type=ISOTROPIC,

temperatureDependency=OFF, dependencies=0,
noCompression=OFF, noTension=OFF,
moduli=LONG_TERM, table=((12000,0.3),))

create few sections
sectionName = 'Homogeneous Shell Section'
section_1 = odb.HomogeneousShellSection(name=sectionName,

material=materialName, thickness=2.0)
Model data:

Set up the section categories.
sCat = odb.SectionCategory(name='S5',

description='Five-Layered Shell')
spBot = sCat.SectionPoint(number=1,

description='Bottom')
spMid = sCat.SectionPoint(number=3,

description='Middle')
spTop = sCat.SectionPoint(number=5,

description='Top')

9–49

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

Create a 2-element shell model,
4 integration points, 5 section points.

part1 = odb.Part(name='part-1', embeddedSpace=THREE_D,
type=DEFORMABLE_BODY)

nodeData = (
(1, 1,0,0),
(2, 2,0,0),
(3, 2,1,0.1),
(4, 1,1,0.1),
(5, 2,-1,-0.1),
(6, 1,-1,-0.1),
)

part1.addNodes(nodeData=nodeData,
nodeSetName='nset-1')

elementData = (
(1, 1,2,3,4),
(2, 6,5,2,1),
)

part1.addElements(elementData=elementData, type='S4',
elementSetName='eset-1', sectionCategory=sCat)

Instance the part.
instance1 = odb.rootAssembly.Instance(name='part-1-1',

object=part1)
create instance level sets for section assignment
elLabels = (1,2)
elset_1 = odb.rootAssembly.instances['part-1-1'].\

ElementSetFromElementLabels(name=materialName,
elementLabels=elLabels)

instance1.assignSection(region=elset_1,
section=section_1)

Field data:

Create a step and a frame.

step1 = odb.Step(name='step-1',
description='first analysis step',

9–50

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

domain=TIME, timePeriod=1.0)
analysisTime=0.1
frame1 = step1.Frame(incrementNumber=1,

frameValue=analysisTime,
description=\

'results frame for time '+str(analysisTime))

Write nodal displacements.

uField = frame1.FieldOutput(name='U',
description='Displacements', type=VECTOR)

nodeLabelData = (1, 2, 3, 4, 5, 6)
dispData = (

(1,2,3),
(4,5,6),
(7,8,9),
(10,11,12),
(13, 14, 15),
(16,17,18)
)

uField.addData(position=NODAL, instance=instance1,
labels=nodeLabelData,
data=dispData)

Make this the default deformed field for visualization.

step1.setDefaultDeformedField(uField)

""" Write stress tensors
(output only available at top/bottom section points)
The element defined above (S4) has 4 integration points.
Hence, there are 4 stress tensors per element.
Each Field constructor refers to only one layer of section
points.
"""

elementLabelData = (1, 2)
topData = (

9–51

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

(1.,2.,3.,4.),
(1.,2.,3.,4.),
(1.,2.,3.,4.),
(1.,2.,3.,4.),
(1.,2.,3.,4.),
(1.,2.,3.,4.),
(1.,2.,3.,4.),
(1.,2.,3.,4.),
)

bottomData = (
(1.,2.,3.,4.),
(1.,2.,3.,4.),
(1.,2.,3.,4.),
(1.,2.,3.,4.),
(1.,2.,3.,4.),
(1.,2.,3.,4.),
(1.,2.,3.,4.),
(1.,2.,3.,4.),
)

transform = (
(1.,0.,0.),
(0.,1.,0.),
(0.,0.,1.)
)

sField = frame1.FieldOutput(name='S',
description='Stress', type=TENSOR_3D_PLANAR,
componentLabels=('S11', 'S22', 'S33','S12'),
validInvariants=(MISES,))

sField.addData(position=INTEGRATION_POINT,
sectionPoint=spTop, instance=instance1,
labels=elementLabelData, data=topData,
localCoordSystem=transform)

sField.addData(position=INTEGRATION_POINT,
sectionPoint=spBot, instance=instance1,
labels=elementLabelData, data=bottomData,
localCoordSystem=transform)

For this step, make this the default field
for visualization.

9–52

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

step1.setDefaultField(sField)

History data:

Create a HistoryRegion for a specific point.

hRegionStep1 = step1.HistoryRegion(name='historyNode0',
description='Displacement and reaction force',
point=instance1.nodes[0])

Create variables for this history output in step1.

hOutputStep1U1 = hRegionStep1.HistoryOutput(name='U1',
description='Displacement', type=SCALAR)

hOutputStep1Rf1 = hRegionStep1.HistoryOutput(name='RF1',
description='Reaction Force', type=SCALAR)

Add history data for step1.

timeData1 = (0.0, 0.1, 0.3, 1.0)
u1Data = (0.0, 0.1, 0.3, 0.5)
rf1Data = (0.0, 0.1, 0.3, 0.5)

hOutputStep1U1.addData(frameValue=timeData1,
value=u1Data)

hOutputStep1Rf1.addData(frameValue=timeData1,
value=rf1Data)

Create another step for history data.
step2 = odb.Step(name='step-2', description='',

domain=TIME, timePeriod=1.0)
hRegionStep2 = step2.HistoryRegion(

name='historyNode0',
description='Displacement and reaction force',
point=instance1.nodes[0])

hOutputStep2U1 = hRegionStep2.HistoryOutput(
name='U1',
description='Displacement',
type=SCALAR)

hOutputStep2Rf1 = hRegionStep2.HistoryOutput(

9–53

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

name='RF1',
description='Reaction Force',
type=SCALAR)

Add history data for the second step.
timeData2 = (1.2, 1.9, 3.0, 4.0)
u1Data = (0.8, 0.9, 1.3, 1.5)
rf1Data = (0.9, 1.1, 1.3, 1.5)

hOutputStep2U1.addData(frameValue=timeData2,
value=u1Data)

hOutputStep2Rf1.addData(frameValue=timeData2,
value=rf1Data)

Get XY Data from the two steps.
u1FromStep1 = hRegionStep1.getSubset(variableName='U1')
u1FromStep2 = hRegionStep2.getSubset(variableName='U1')

Square the history data.
u1SquaredFromStep1 = \

power(u1FromStep1.historyOutputs['U1'], 2.0)
u1SquaredFromStep2 = \

power(u1FromStep2.historyOutputs['U1'], 2.0)

Add the squared displacement to the two steps.
hOutputStep1sumU1 = hRegionStep1.HistoryOutput(

name='squareU1',
description='Square of displacements',
type=SCALAR)

hOutputStep1sumU1.addData(data=u1SquaredFromStep1.data)

hOutputStep2sumU1 = hRegionStep2.HistoryOutput(
name='squareU1',
description='Square of displacements',
type=SCALAR)

hOutputStep2sumU1.addData(data=u1SquaredFromStep2.data)

Save the results in the output database.
Use the Visualization module of Abaqus/CAE to
view the contents of the output database.

9–54

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

odb.save()
odb.close()

if __name__ == "__main__":
createODB()

9.10.3 An Abaqus Scripting Interface version of FPERT
A Fortran program that reads the Abaqus results file and creates a deformed mesh from the original
coordinate data and eigenvectors is described in “Creation of a perturbed mesh from original coordinate
data and eigenvectors: FPERT,” Section 15.1.4 of the Abaqus Example Problems Guide. This example
illustrates an Abaqus Scripting Interface script that reads an output database and performs similar
calculations.

The command line arguments provide the following:

• odbName: The output database file name.

• modeList: A list of eigenmodes to use in the perturbation.

• weightList: The perturbation weighting factors.

• outNameUser: The output file name (optional).

Use the following command to retrieve the example script:

abaqus fetch job=odbPert

Abaqus Scripting Interface version of FPERT, a FORTRAN
program to create a perturbed mesh from original coordinate
data and eigenvectors. FPERT is described in the Abaqus Example
Problems Manual.

import sys
from odbAccess import *
from types import IntType

Get input from the user

odbName = raw_input('Enter odb name (w/o .odb): ')
modes = eval(raw_input('Enter mode shape(s): '))
if type(modes) is IntType:

modes = (modes,)

odb = openOdb(odbName + '.odb')

9–55

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

Get the undeformed coordinates from the first
step and frame

step = odb.steps.values()[0]

try:
coords = step.frames[0].fieldOutputs['COORD']

except:
err = "The analysis must include a field output request \

for variable COORD."
print err
sys.exit(1)

Perturb the nodal coordinates

factors = []
for mode in modes:

try:
frame = step.frames[mode]

except IndexError:
print 'Input error: mode %s does not exist' % mode
sys.exit(1)

factors.append(float(raw_input(
'Enter imperfection factor for mode %s: '% mode)))

coords = coords + factors[-1] * frame.fieldOutputs['U']

Write new nodal coordinates to a file

outFile = open(odbName + '_perturbed.inp', 'w')
header = \
"""

** Node data for perturbed mesh.
** Input mesh from: %s
** Mode shapes used: %s
** Imperfection factors used: %s

"""
outFile.write(header % (odbName, modes, factors))
format = '%6i, %14.7e, %14.7e, %14.7e\n'
for value in coords.values:

9–56

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

outFile.write(
format % ((value.nodeLabel,) + tuple(value.data)))

outFile.write('** End of perturbed mesh node input file.')
outFile.close()

9.10.4 Computations with FieldOutput objects
This example illustrates how you can operate on FieldOutput objects and save the computed field to the
output database. The example script does the following:

• Retrieves two specified fields from the output database.
• Computes a new field by subtracting the fields that were retrieved.
• Creates a new Step object in the output database.
• Creates a new Frame object in the new step.
• Creates a new FieldOutput object in the new frame.
• Uses the addData method to add the computed field to the new FieldOutput object.
Use the following command to retrieve the example script:

abaqus fetch job=fieldOperation

The fetch command also retrieves an input file that you can use to generate the output database that is
read by the example script.

FieldOutput operators example problem
#
Script that does computations with fields and
saves the results computed to the output database
#

from odbAccess import *
odb = openOdb(path='fieldOperation.odb')

Get fields from output database.

field1 = odb.steps['LC1'].frames[1].fieldOutputs['U']
field2 = odb.steps['LC2'].frames[1].fieldOutputs['U']

Compute difference between fields.

deltaDisp = field2 - field1

9–57

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

Save new field.

newStep = odb.Step(name='user',
description='user defined results', domain= TIME, timePeriod=0)

newFrame = newStep.Frame(incrementNumber=0, frameValue=0.0)
newField = newFrame.FieldOutput(name='U',

description='delta displacements', type=VECTOR)
newField.addData(field=deltaDisp)

odb.save()

9.10.5 Computations with FieldValue objects
This example illustrates how you can use the fieldValue operators to sum and average fieldValues in a
region. The example script does the following:

• Retrieves the stress field for a specified region during the last step and frame of the output database.
• Sums all the stress fieldValues and computes the average value.
• For each component of stress, print the sum and the average stress.
Use the following command to retrieve the example script:

abaqus fetch job=sumRegionFieldValue

The fetch command also retrieves an input file that you can use to generate the output database that is
read by the example script.

#
fieldValue operators example problem:
#
sum and average stress field values in a region
#

from odbAccess import *

#
get field
#

odb = openOdb(path='sumRegionFieldValue.odb')
endSet = odb.rootAssembly.elementSets['END1']

9–58

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

field = odb.steps.values()[-1].frames[-1].fieldOutputs['S']
subField = field.getSubset(region=endSet)

#
sum values
#

sum = 0
for val in subField.values:

sum = sum + val
ave = sum / len(subField.values)

#
print results
#

print 'Component Sum Average'
labels = field.componentLabels
for i in range(len(labels)):

print '%s %5.3e %5.3e'% \
(labels[i], sum.data[i], ave.data[i])

9.10.6 Computations with HistoryOutput objects
This example illustrates how you can use the historyOutput operators to compute the displacement
magnitude from the components. The example script does the following:

• Retrieves the node of interest using a nodeSet.
• Uses the node of interest to construct a HistoryPoint object.
• Uses the HistoryPoint to retrieve the historyRegion.
• Computes the displacement magnitude history from the displacement component HistoryOutput
objects in the historyRegion.

• Scales the displacement magnitude history using a predefined value.
• Prints the displacement magnitude history.
Use the following command to retrieve the example script:

abaqus fetch job=compDispMagHist

The fetch command also retrieves an input file that you can use to generate the output database that is
read by the example script.

9–59

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

HistoryOutput operators example problem.
#
Compute magnitude of node displacement history from
displacement components and scale relative to given
allowable displacement.
#

from odbAccess import *

#
get historyRegion for the node in nodeSet TIP
#

odb = openOdb(path='compDispMagHist.odb')
endSet = odb.rootAssembly.instances['BEAM-1-1'].nodeSets['TIP']
histPoint = HistoryPoint(node=endSet.nodes[0])
tipHistories = odb.steps['Step-2'].getHistoryRegion(

point=histPoint)

#
Compute and scale magnitude.
#

maxAllowableDisp = 5.0
sum = 0
componentLabels = ('U1', 'U2', 'U3')
for name in componentLabels:

sum = sum + power(tipHistories.historyOutputs[name], 2.0)
sum = sqrt(sum) / maxAllowableDisp

#
Print magnitude.
#

print 'History:', sum.name
print 'Time Magnitude'
for dataPair in sum.data:

print "%5.4f %5.2f"%(dataPair[0], dataPair[1])

9–60

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

9.10.7 Creating a new load combination from different load cases
This example illustrates how you can use the frame operators to create a new load combination from
existing load cases. The example script does the following:

• Retrieves the information describing the new load combination from the command line.
• Retrieves the frames for each load case.
• Computes the new stresses and displacements.
• Saves data computed to the output database as a new load combination.

The command line arguments provide the following:

• odbName: The output database file name.

• stepName: The name of the step containing the load cases.

• loadCaseNames: The load case names.

• scaling: The scale factors to apply to each load case.

Use the following command to retrieve the example script:

abaqus fetch job=createLoadComb

The fetch command also retrieves an input file that you can use to generate an output database that can
be read by the example script.

import types
from odbAccess import *

retrieve request from user
odbName = raw_input('Enter odb name')
stepName = raw_input('Enter step name')

loadCaseNames = eval(raw_input(\
'Enter new load case as: \
[\'loadCase1Name\', ..., \'loadCaseNName\']'))

if type(loadCaseNames) == types.TupleType:
loadCaseNames = list(loadCaseNames)

lcName = raw_input('Enter new load case name')
scaling = eval(raw_input(\

'Enter new load case as:(scaleFactor1, .., scaleFactorN)'))

odb = openOdb(odbName)

9–61

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

step = odb.steps[stepName]

compute new load case
newStress = 0
newDisp = 0

for loadCaseName in loadCaseNames:
frame = step.getFrame(loadCase=step.loadCases[loadCaseName])
scaleFac = scaling[loadCaseNames.index(frame.loadCase.name)]
newStress = newStress + scaleFac*frame.fieldOutputs['S']
newDisp = newDisp + scaleFac*frame.fieldOutputs['U']

save new load case to odb
lcNew = step.LoadCase(name=lcName)
newFrame = step.Frame(loadCase=lcNew)
newFrame.FieldOutput(field=newStress, name='S')
newFrame.FieldOutput(name='U', field=newDisp)

odb.save()
odb.close()

9.10.8 Stress range for multiple load cases
This example illustrates how you can use the envelope operations to compute the stress range over a
number of load cases. The example script does the following:

• For each load case during a specified step, the script collects the S11 components of the stress tensor
fields into a list of scalar fields.

• Computes the maximum andminimum of the S11 stress component using the envelope calculations.
• Computes the stress range using the maximum and minimum values of the stress component.
• Creates a new frame in the step.
• Writes the computed stress range into a new FieldOutput object in the new frame.
Use the following command to retrieve the example script:

abaqus fetch job=stressRange

The fetch command also retrieves an input file that you can use to generate an output database that can
be read by the example script.

9–62

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

from odbAccess import *

retrieve request from user
odbName = raw_input('Enter odb name')
stepName = raw_input('Enter step name')

retrieve steps from the odb
odb=openOdb(odbName)
step = odb.steps[stepName]
sFields = []

for loadCase in step.loadCases.values():
stressField = step.getFrame(loadCase=loadCase).\

fieldOutputs['S']
sFields.append(stressField.getScalarField(

componentLabel='S11'))

compute stress range
maxStress, maxLoc = maxEnvelope(sFields)
minStress, minLoc = minEnvelope(sFields)

stressRange = maxStress - minStress

save to same step
newFrame = step.Frame(incrementNumber=0, frameValue=0.0,

description='Stress Range')
newFrame.FieldOutput(field=stressRange, name='S11 Range')

odb.save()
odb.close()

9.10.9 Transformation of field results
This example illustrates how field results can be transformed to a different coordinate system. The
example computes deviation of the nodal displacements with respect to a perfectly cylindrical
displacement (cylinder bore distortion). The example does the following:

• Creates a cylindrical coordinate system.
• Transforms the results to the new coordinate system.
• Computes the average radial displacement.

9–63

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

• Computes the distortion as the difference between radial displacement and the average radial
displacement.

• Saves the distortion field to the output database for viewing.
Use the following commands to retrieve the example script and an input file to create a sample

output database:

abaqus fetch job=transformExa
abaqus fetch job=esf4sxdg

from odbAccess import *

Retrieve request from user.

odbName = raw_input('Enter odb name')
stepName = raw_input('Enter step name')
frameNo = int(raw_input('Enter frame number'))

odb = openOdb(odbName)

Retrieve the displacements from last frame of the last step.

step = odb.steps[stepName]
frame = step.frames[frameNo]
displacement = frame.fieldOutputs['U']

Create cylindrical coordinate system and compute
associated results

coordSys = odb.rootAssembly.DatumCsysByThreePoints(name='cylC',
coordSysType=CYLINDRICAL, origin=(0,0,0),
point1=(1.0, 0.0, 0), point2=(0.0, 0.0, 1.0))

cylindricalDisp = displacement.getTransformedField(
datumCsys=coordSys)

radialDisp = cylindricalDisp.getScalarField(componentLabel='U1')

Compute average radius.

9–64

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

sum = 0.0
for val in radialDisp.values:

sum = sum + val.data
aveDisp = sum / len(radialDisp.values)

Compute distortion.

distortion = radialDisp - aveDisp

Save computed results to the database.

frame.FieldOutput(field=radialDisp)
fieldDescription = 'Distortion (\

average radial displacement = ' + str(aveDisp) + ')'
frame.FieldOutput(name='Distortion',

description=fieldDescription, field=distortion)

odb.save()
odb.close()

9.10.10 Viewing the analysis of a meshed beam cross-section
This example illustrates how you can view the results of a meshed beam cross-section analysis that was
generated using Timoshenko beams, as described in “Meshed beam cross-sections,” Section 10.6 of the
Abaqus Analysis User’s Guide. Before you execute the example script, you must run two analyses that
create the following output database files:

• An output database generated by the two-dimensional cross-section analysis. The script reads cross-
section data, including the out-of-plane warping function, from this output database.

• An output database generated by the beam analysis. The script reads generalized section strains
(SE) from this output database.

Use the following command to retrieve the example script:

abaqus fetch job=compositeBeam

You must run the script from Abaqus/CAE by selecting File→Run Script from the main menu bar. The
script uses getInputs to display a dialog box that prompts you for the name of the output databases
generated by the two-dimensional cross-section analysis and by the beam analysis. The names are case-
insensitive, and you can omit the .odb file suffix. The files must be in the local directory. The dialog
box also prompts you for the following:

• The name of the step
• The increment or mode number (for a frequency analysis)

9–65

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

• The name of the load case (if any)
• The name of the part instance
• The element number
• The integration point number

If you do not enter a value in a field, the script looks in the beam analysis output database for possible
values. The script then enters a default value in the dialog box and displays information about the range
of possible values in the Abaqus/CAE message area. You can leave the load case field blank if the
analysis did not include load cases. The script does not continue until all the values in the dialog box are
acceptable. The same values are written to a file called compositeBeam_values.dat in the local
directory, and these values appear as defaults in the dialog box the next time you run the example script.

After the getInputs method returns acceptable values, the script reads the two output databases
and writes the generated data back to the output database created by the two-dimensional cross-section
analysis. The script then displays an undeformed contour plot of S11 and uses the getInputs method
again to display a dialog box with a list of the available stress and strain components (S11, S22, S33, E11,
E22, and E33). Click OK in this dialog box to cycle through the available components. Click Cancel
to end the script. You can also select the component to display by starting the Visualization module and
selecting Result→Field Output from the main menu bar.

The example script writes new stress and strain fields. The script must provide a unique name for
the generated field output because each of these fields is generated for a specific beam analysis output
database and for a specific part instance, step, frame, element, and integration point. The script constructs
this unique name as follows:

• All contour stress and strain fields for a specific beam analysis output database are written to a new
frame, where the description of the frame is the name of the output database. For example, for a
beam analysis output database called beam_run17.odb, the frame description is Beam ODB:
beam_run17.

• The field name is assembled from a concatenation of the step name, frame index,
instance name, element, and integration point, followed by E or S. For example,
Step-1_4_LINEARMESHED_12_1_E. Any spaces in a step or instance name are replaced by
underscores.

You can run the script many times; for example, to create contour data for a particular step,
increment, and integration point along each element of the beam. In this case you would also use
Result→Field Output to select which element to display.

The contour data generated by the example script are written back to the output database that was
originally created by the two-dimensional, cross-section analysis. If you want to preserve this database
in its original form, you must save a copy before you run the example script.

9–66

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

9.10.11 Using infinite elements to compute and view the results of an
acoustic far-field analysis

This example illustrates how you can use the Abaqus Scripting Interface to compute acoustic far-field
pressure values from infinite element sets and project the results onto a spherical surface for visualization
purposes. The script extends the acoustic analysis functionality within Abaqus/Standard, as described
in “Acoustic, shock, and coupled acoustic-structural analysis,” Section 6.10.1 of the Abaqus Analysis
User’s Guide, and “Infinite elements,” Section 28.3.1 of the Abaqus Analysis User’s Guide. The script
writes the acoustic far-field pressure values to an output database, and you can use Abaqus/CAE to view
the far-field results.

The far-field pressure is defined as

where is the acoustic pressure at a distance from the reference point, is the wave number, and
is the acoustic far-field pressure. The acoustic pressure decibel value is defined as

where is the magnitude of the acoustic pressure at a point, is the root mean square acoustic
pressure, and is the decibel reference value given as user input. The far-field pressure decibel
value is defined in the same manner as , using the same reference value ().

Note: If (in SI units), corresponds to

The script also calculates the far-field acoustic intensity, which is defined as

where is the far-field rms pressure, is the fluid density, and c is the speed of sound in the
medium.

Before you execute the script, you must run a direct-solution, steady-state dynamics acoustics
analysis that includes three-dimensional acoustic infinite elements (ACIN3D3, ACIN3D4, ACIN3D6,
and ACIN3D8). In addition, the output database must contain results for the following output variables:

• INFN, the acoustic infinite element normal vector.
• INFR, the acoustic infinite element “radius,” used in the coordinate map for these elements.

9–67

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

• PINF, the acoustic infinite element pressure coefficients.
Use the following command to retrieve the script:

abaqus fetch job=acousticVisualization

Enter the Visualization module, and display the output database in the current viewport. Run the script
by selecting File→Run Script from the main menu bar.

The script uses getInputs to display a dialog box that prompts you for the following information:

• The name of the element set containing the infinite elements (the name is case sensitive). By default,
the script locates all the infinite elements in the model and uses them to create the spherical surface.
If the script cannot find the specified element set in the output database, it displays a list of the
available element sets in the message area.

• The radius of the sphere (required). The script asks you to enter a new value if the sphere with this
radius does not intersect any of the selected infinite elements.

• The coordinates of the center of the sphere. By default, the script uses (0,0,0).
• The analysis steps. You can enter one of the following:

– An Int

– A comma-separated list of Ints

– A range; for example, 1:20

You can also enter a combination of Ints and ranges; for example, 4,5,10:20,30. By default, the
script reads data from all the steps. The script ignores any steps that do not perform a direct-solution,
steady-state dynamics acoustics analysis or that have no results.

• The frequencies for which output should be generated (Hz). You can enter a Float, a list of Floats, or
a range. By default, the script generates output for all the frequencies in the original output database.

• A decibel reference value (required).
• The name of the part instance to create (required). The script appends this name to the name of the
instance containing the infinite elements being used.

• The speed of sound (required).
• The fluid density (required)
• Whether to write data to the original output database. By default, the script writes to an output
database called current-odb-name_acvis.odb.

After the getInputs method returns acceptable values, the script processes the elements in the
specified element sets. The visualization sphere is then determined using the specified radius and center.
For each element in the infinite element sets, the script creates a corresponding membrane element such
that the new element is a projection of the old element onto the surface of the sphere. The projection
uses the infinite element reference point and the internally calculated infinite direction normal (INFN) at
each node of the element.

Once the new display elements have been created, the script writes results at the nodes in the set.
The following output results are written back to the output database:

9–68

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

• POR, the acoustic pressure.
• PORdB, the acoustic pressure decibel value. If the reference value used is 2 × 10−5 Pa, the PFARdB
corresponds to dB SPL.

• PFAR, the acoustic far-field pressure.
• PFARdB, the far-field pressure decibel value.
• INTEN_FAR, the far-field acoustic intensity.
To create the output at each node, the script first determines the point at which the node ray intersects

the sphere. Using the distance from the reference point to the intersection point and the element shape
functions, the required output variables are calculated at the intersection point.

After the script has finished writing data, it opens the output database containing the new data. For
comparison, the original instance is displayed along with the new instance, but results are available only
for the new instance. However, if you chose to write the results back to the original output database, the
original instance and the new instance along with the original results and the new results can be displayed
side-by-side. The script displays any error, warning, or information messages in the message area.

You can run the script more than once and continue writing data to the same output database. For
example, you can run the script several times to look at the far-field pressures at various points in space,
and results on several spheres will be written to the output database.

To see how the script operates on a single triangular-element model, use the following command to
retrieve the input file:

abaqus fetch job=singleTriangularElementModel

Use the following command to create the corresponding output database:

abaqus job=singleTriangularElementModel

The results from running the script twice using the single triangular-element model, changing the radius
of the sphere, and writing the data back to the original output database are shown in Figure 9–6.

9–69

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

POR

+1.523e−04
+2.229e−04
+2.935e−04
+3.642e−04
+4.348e−04
+5.055e−04
+5.761e−04
+6.468e−04
+7.174e−04
+7.881e−04
+8.587e−04
+9.294e−04
+1.000e−03

Figure 9–6 Displaying the acoustic pressure on several spheres.

This model simulates the response of a sphere in “breathing” mode (a uniform radial
expansion/compression mode). The model consists of one triangular ACIN3D3 element. Each node of
the element is placed on a coordinate axis at a distance of 1.0 from the origin that serves as the reference
point for the infinite element. The acoustic material properties do not have physical significance; the
values used are for convenience only. The loading consists of applying an in-phase pressure boundary
condition to all the nodes. Under this loading and geometry, the model behaves as a spherical source
(an acoustic monopole) radiating in the radial direction only. The acoustic pressure, , and the acoustic
far-field pressure, , at a distance from the center of the sphere are

and

where is the known acoustic pressure at some reference distance and is the wave number.
For this single-element example, you should enter a value of 1.0 for the speed of sound; thus,

, where is the frequency in Hz. in this model is 1, and is 0.001. The equations for the
acoustic pressure, , and the acoustic far-field pressure, , reduce to

and

9–70

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

9.10.12 An Abaqus Scripting Interface version of FELBOW
This example illustrates the use of an Abaqus Scripting Interface script to read selected element
integration point records from an output database and to postprocess the elbow element results. The
script creates X–Y data that can be plotted with the X–Y plotting capability in Abaqus/CAE. The script
performs the same function as the Fortran program described in “Creation of a data file to facilitate the
postprocessing of elbow element results: FELBOW,” Section 15.1.6 of the Abaqus Example Problems
Guide.

The script reads integration point data for elbow elements from an output database to visualize one
of the following:

1. Variation of an output variable around the circumference of a given elbow element, or

2. Ovalization of a given elbow element.

The script creates either an ASCII file containing X–Y data or a new output database file that can be
viewed using Abaqus/CAE.

To use option 2, you must ensure that the integration point coordinates (COORD) are written to
the output database. For option 1 the X-data are data for the distance around the circumference of the
elbow element, measured along the middle surface, and the Y-data are data for the output variable. For
option 2 the X–Y data are the current coordinates of the middle-surface integration points around the
circumference of the elbow element, projected to a local coordinate system in the plane of the deformed
cross-section. The origin of the local system coincides with the center of the cross-section; the plane of
the deformed cross-section is defined as the plane that contains the center of the cross-section.

You should specify the name of the output database during program execution. The script prompts
for additional information, depending on the option that was chosen; this information includes the
following:

• Your choice for storing results (ASCII file or a new output database)
• File name based on the above choice
• The postprocessing option (1 or 2)
• The part name
• The step name
• The frame number
• The element output variable (option 1 only)
• The component of the variable (option 1 only)
• The section point number (option 1 only)
• The element number or element set name

9–71

Abaqus ID:
Printed on:

EXAMPLE SCRIPTS THAT ACCESS DATA FROM AN OUTPUT DATABASE

Before executing the script, run an analysis that creates an output database file containing the
appropriate output. This analysis includes, for example, output for the elements and the integration
point coordinates of the elements. Execute the script using the following command:

abaqus python felbow.py <filename.odb>

The script prompts for other information, such as the desired postprocessing option, part name, etc. The
script processes the data and produces a text file or a new output database that contains the information
required to visualize the elbow element results.

“Elastic-plastic collapse of a thin-walled elbow under in-plane bending and internal pressure,”
Section 1.1.2 of the Abaqus Example Problems Guide, contains several figures that can be created with
the aid of this program.

9–72

Abaqus ID:
Printed on:

WHAT DO YOU NEED TO ACCESS THE OUTPUT DATABASE?

10. Using C++ to access an output database

The following sections describe the architecture of an output database and how to use the Abaqus C++
Application Programming Interface (API) to access data from an output database. The following topics
are covered:

• “Overview,” Section 10.1
• “What do you need to access the output database?,” Section 10.2
• “Abaqus Scripting Interface documentation style,” Section 10.3
• “How the object model for the output database relates to commands,” Section 10.4
• “Object model for the output database,” Section 10.5
• “Compiling and linking your C++ source code,” Section 10.6
• “Accessing the C++ interface from an existing application,” Section 10.7
• “The Abaqus C++ API architecture,” Section 10.8
• “Utility interface,” Section 10.9
• “Reading from an output database,” Section 10.10
• “Writing to an output database,” Section 10.11
• “Exception handling in an output database,” Section 10.12
• “Computations with Abaqus results,” Section 10.13
• “Improving the efficiency of your scripts,” Section 10.14
• “Example programs that access data from an output database,” Section 10.15

10.1 Overview

The C++ interface to an output database is related closely to the Abaqus Scripting Interface. Disparities
between the two interfaces are due to fundamental differences in the programming languages. The C++
interface is intended for users with high-performance requirements; others are encouraged to use the
Abaqus Scripting Interface.

A working knowledge of the C++ programming language is assumed.

10.2 What do you need to access the output database?

To use the Abaqus C++ API to access an output database, you need to understand the following:

• The fundamentals of Abaqus output data and the Abaqus concepts of instances, fields, and history.
• How to program in C++.
• How to use the C++ API utility interface.
• How to use Abaqus objects.

10–1

Abaqus ID:
Printed on:

Abaqus SCRIPTING INTERFACE DOCUMENTATION STYLE

• How to compile and link your C++ source code.

10.3 Abaqus Scripting Interface documentation style

This section describes the style that is used to describe a command in the Abaqus Scripting Reference
Guide. You may want to refer to the Abaqus Scripting Reference Guide while you read this section and
compare the style of a documented command with the descriptions provided here. The following topics
are covered:

• “How the commands are ordered,” Section 10.3.1
• “Access,” Section 10.3.2
• “Path,” Section 10.3.3
• “Prototype,” Section 10.3.4
• “Return value,” Section 10.3.5

10.3.1 How the commands are ordered
The following list describes the order in which commands are documented in the Abaqus Scripting
Reference Guide:

• Chapters are grouped alphabetically by functionality. In general, the functionality corresponds
to the modules and toolsets that are found in Abaqus/CAE; for example, Chapter 3, “Amplitude
commands,” of the Abaqus Scripting Reference Guide; Chapter 4, “Animation commands,” of the
Abaqus Scripting Reference Guide; and Chapter 6, “Assembly commands,” of the Abaqus Scripting
Reference Guide.

• Within each chapter the primary objects appear first and are followed by other objects in alphabetical
order. For example, in Chapter 31, “Mesh commands,” of the Abaqus Scripting Reference Guide,
the objects are listed in the following order:

– Assembly

– Part

– ElemType

– MeshEdge

– MeshElement

– MeshFace

– MeshNode

– MeshStats

• Within each object description, the commands are listed in the following order:
– Constructors (in alphabetical order)

10–2

Abaqus ID:
Printed on:

Abaqus SCRIPTING INTERFACE DOCUMENTATION STYLE

– Methods (in alphabetical order)

– Members

• Some methods are not associated with an object and appear at the end of a chapter; for example,
the evaluateMaterial() method appears at the end of Chapter 29, “Material commands,” of
the Abaqus Scripting Reference Guide.

10.3.2 Access

The description of each object in the Abaqus Scripting Reference Guide begins with a section that
describes how you access an instance of the object.

The following is the access description for the Part object:

odb.parts()[name]

The access description specifies where instances of the object are located in the data model. The Part
object can accordingly be accessed as:

odb_PartContainer partCon = odb.parts();
odb_Part part = partCon["PART-1-1"];

The Access description for the FieldOutput object is

odb.steps()[name].frames(i).fieldOutputs()[name]

The following statements show how you use the object described by this Access description:

odb_StepContainer stepCon = odb.steps();
odb_Step step = stepCon["Side load"];
odb_SequenceFrame frameSeq = step.frames();
odb_Frame lastFrame = frameSeq.Get(frameSeq.Size() -1);
odb_FieldOutputContainer fieldCon = lastFrame.fieldOutputs();
odb_FieldOutput field= fieldCon["S"];

odb_FieldOutput iPointFieldData = field.getSubset(
odb_Enum::INTEGRATION_POINT);

odb_SequenceInvariant myInvariants = field.validInvariants();

• The next to last line shows the getSubset method of the FieldOutput object.
• The last line shows the validInvariants member of the FieldOutput object.

10–3

Abaqus ID:
Printed on:

Abaqus SCRIPTING INTERFACE DOCUMENTATION STYLE

10.3.3 Path
A method that creates an object is called a “constructor.” The Abaqus C++ API uses the convention
that constructors begin with an uppercase character. In contrast, methods that operate on an object begin
with a lowercase character. The description of each constructor in the Abaqus Scripting Reference Guide
includes a path to the command. For example, the following describes the path to the Part constructor:

odb.Part

Some constructors include more than one path. For example, you can create a nodeSet that is associated
with either a Part object or the RootAssembly object, and each path is listed.

odb.parts()[name].NodeSet
odb.rootAssembly().NodeSet

The path is not listed if the method is not a constructor.
If you are using the Abaqus C++ API to read data from an output database, the objects exist when

you open the output database, and you do not have to use constructors to create them. However, if you
are creating or writing to an output database, you may need to use constructors to create new objects,
such as part instances and steps. The documentation describes the path to the constructors that create
objects in an output database.

For example, the Path description for the FieldOutput constructor is

odb.steps()[name].frames(i).FieldOutput

The following statement creates a FieldOutput object:

odb_StepContainer stepCon = odb.steps();
odb_Step step = stepCon["Side load"];
odb_SequenceFrame frameSeq = step.frames();
odb_Frame frame = frameSeq.Get(frameSeq.Size() -1);
odb_FieldOutput& myFieldOutput = frame.FieldOutput("S",

"stress", odb_Enum::TENSOR_3D_FULL);

10.3.4 Prototype
Chapter 61, “Odb commands,” of the Abaqus Scripting Reference Guide, contains a prototype section
for each C++ command. The prototype provides the type returned by the command, the name of the
command, and a list of all its arguments along with the type of each argument. Required arguments
appear first in the list followed by default arguments along with their default value. For example, the
Frame constructor is given as

odb_Frame Frame(int incrementNumber, float frameValue,

10–4

Abaqus ID:
Printed on:

HOW THE OBJECT MODEL FOR THE OUTPUT DATABASE RELATES TO COMMANDS

const odb_String& description="");

indicating that the incrementNumber and frameValue arguments are required, that the optional
description argument has a default value of the empty string, and that the method returns a reference
to the Frame object created.

10.3.5 Return value
All commands return a value. Many commands return the value void. Constructors (methods that
create an object) always return the object being created. The return value of a command can be assigned
to a variable. For example, in the following statement the Odb constructor returns an Odb object, and
the variable newOdb refers to this new object.

odb_Odb newOdb& = Odb("new", "", "", fileName);

You can use the object returned by a command in subsequent statements. The following statement uses
the output database created by the previous statement:

odb_Part& part = newOdb.Part("PART-1-1",
odb_Enum::THREE_D, odb_Enum::DEFORMABLE_BODY);

If an exception is raised while a statement is executing, the command does not return a value.

10.4 How the object model for the output database relates to
commands

You need to understand the object model for the output database both to read data from it and to write data
to it. An object model describes the relationship between objects. The object model for the Abaqus/CAE
model is described in “The Abaqus object model,” Section 6.1.

For example, consider the object model for field output data shown in Figure 10–1. The Odb object
at the top of the figure is created when you issue the command to open or create an output database. As
you move down the object model, an OdbStep object is a member of the Odb object; similarly, a Frame
object is a member of the OdbStep object. The FieldOutput object has two members—fieldValue and
fieldLocation.

The object model translates directly to the structure of an Abaqus C++ API command. For example,
the following command refers to a Frame object in the sequence of frames contained in an OdbStep
object:

odb.steps()["10 hz"].frames(3);

Similarly, the following command refers to the sequence of field data contained in a FieldOutput object.

odb.steps()["10 hz"].frames.get(3).

10–5

Abaqus ID:
Printed on:

OBJECT MODEL FOR THE OUTPUT DATABASE

steps

 = Container
 = Singular object

odb
rootAssembly

parts

sections

Model Data

frames

historyRegions

Results Data

point
historyOutputs

fieldOutputs

materials

Figure 10–1 The output database object model.

fieldOutputs()["U"].values(47);

You use commands to access objects by stepping through the hierarchy of objects in the object model.
The Access, Path, and Prototype descriptions in Chapter 61, “Odb commands,” of the Abaqus
Scripting Reference Guide describe the interface definition of the command. The interface definition of
the command reflects the hierarchy of objects in the object model.

10.5 Object model for the output database

An output database generated from an Abaqus analysis contains both model and results data as shown
in Figure 10–1.

Model data

Model data describe the parts and part instances that make up the root assembly; for example, nodal
coordinates, set definitions, and element types. Model data are explained in more detail in “Model
data,” Section 10.5.1.

10–6

Abaqus ID:
Printed on:

OBJECT MODEL FOR THE OUTPUT DATABASE

Results data

Results data describe the results of your analysis; for example, stresses, strains, and displacements.
You use output requests to configure the contents of the results data. Results data can be either
field output data or history output data; for a more detailed explanation, see “Results data,”
Section 10.5.2.

Note: For a description of object models, see “An overview of the Abaqus object model,” Section 6.1.1.

You can find more information on the format of the output database in “Output to the output database,”
Section 4.1.3 of the Abaqus Analysis User’s Guide.

10.5.1 Model data

Model data define the model used in the analysis; for example, the parts, materials, initial and boundary
conditions, and physical constants. More information about model data can be found in “The Abaqus
object model,” Section 6.1, and “Defining an assembly,” Section 2.10.1 of the Abaqus Analysis User’s
Guide.

Abaqus does not write all the model data to the output database; for example, you cannot access
loads, and only certain interactions are available. Model data that are stored in the output database
include parts, the root assembly, part instances, regions, materials, sections, section assignments, and
section categories, each of which is stored as an Abaqus C++ API object. These components of model
data are described below.

Parts

Apart in the output database is a finite element idealization of an object. Parts are the building blocks
of an assembly and can be either rigid or deformable. Parts are reusable; they can be instanced
multiple times in the assembly. Parts are not analyzed directly; a part is like a blueprint for its
instances. A part is stored in an output database as a collection of nodes, elements, surfaces, and
sets.

The root assembly

The root assembly is a collection of positioned part instances. An analysis is conducted by defining
boundary conditions, constraints, interactions, and a loading history for the root assembly. The
output database object model contains only one root assembly.

Part instances

A part instance is a usage of a part within the assembly. All characteristics (such as mesh and
section definitions) defined for a part become characteristics for each instance of that part—they
are inherited by the part instances. Each part instance is positioned independently within the root
assembly.

10–7

Abaqus ID:
Printed on:

OBJECT MODEL FOR THE OUTPUT DATABASE

Materials

Materials contain material models comprised of one or morematerial property definitions. The same
material models may be used repeatedly within a model; each component that uses the samematerial
model shares identical material properties. Many materials may exist within a model database, but
only the materials that are used in the assembly are copied to the output database.

Sections

Sections add the properties that are necessary to define completely the geometric and material
properties of an element. Various element types require different section types to complete their
definitions. For example, shell elements in a composite part require a section that provides a
thickness, multiple material models, and an orientation for each material model; all these pieces
combine to complete the composite shell element definition. Like materials, only those sections
that are used in the assembly are copied to the output database.

Section assignments

Section assignments link section definitions to the regions of part instances. Section assignments
in the output database maintain this association. Sections are assigned to each part in a model, and
the section assignments are propagated to each instance of that part.

Section categories

You use section categories to group the regions of the model that use the same section definitions;
for example, the regions that use a shell section with five section points. Within a section category,
you use the section points to identify the location of results; for example, you can associate section
point 1 with the top surface of a shell and section point 5 with the bottom surface.

Analytical rigid surface

Analytical rigid surfaces are geometric surfaces with profiles that can be described with straight
and curved line segments. Using analytical rigid surfaces offers important advantages in contact
modeling.

Rigid bodies

You use rigid bodies to define a collection of nodes, elements, and/or surfaces whose motion is
governed by the motion of a single node, called the rigid body reference node.

Pretension Sections

Pretension sections are used to associate a pre-tension node with a pre-tension section. The pre-
tension section can be defined using a surface for continuum elements or using an element for truss
or beam elements.

10–8

Abaqus ID:
Printed on:

OBJECT MODEL FOR THE OUTPUT DATABASE

Interactions

Interactions are used to define contact between surfaces in an analysis. Only contact interactions
defined using contact pairs are written to the output database.

Interaction properties

Interaction properties define the physical behavior of surfaces involved in an interaction. Only
tangential friction behavior is written to the output database.

Figure 10–2 shows the model data object model.

steps

 = Container
 = Singular object

odb

nodeSets

elementSets

surfaces

instances

nodeSets

elementSets

surfaces

elements

nodes

rootAssembly

parts

sectionCategories

description

Model Data

Results Data

HistoryRegion

fieldOutputs

point
historyOutputs

materials

name

Step

frames

historyRegions

Frame

Figure 10–2 The model data object model.

10.5.2 Results data
Results data describe the results of your analysis. Abaqus organizes the analysis results in an output
database into the following components:

Steps

An Abaqus analysis contains a sequence of one or more analysis steps. Each step is associated with
an analysis procedure.

10–9

Abaqus ID:
Printed on:

OBJECT MODEL FOR THE OUTPUT DATABASE

Frames

Each step contains a sequence of frames, where each increment of the analysis that resulted in output
to the output database is called a frame. In a frequency or buckling analysis each eigenmode is stored
as a separate frame. Similarly, in a steady-state harmonic response analysis each frequency is stored
as a separate frame.

Field output

Field output is intended for infrequent requests for a large portion of the model and can be used
to generate contour plots, animations, symbol plots, and displaced shape plots in the Visualization
module of Abaqus/CAE. You can also use field output to generate an X–Y data plot. Only complete
sets of basic variables (for example, all the stress or strain components) can be requested as field
output. Field output is composed of a “cloud of data values” (e.g., stress tensors at each integration
point for all elements). Each data value has a location, type, and value. You use the regions defined
in the model data, such as an element set, to access subsets of the field output data. Figure 10–3
shows the field output data object model within an output database.

History output

History output is output defined for a single point or for values calculated for a portion of the model
as a whole, such as energy. History output is intended for relatively frequent output requests for
small portions of the model and can be displayed in the form of X–Y data plots in the Visualization
module of Abaqus/CAE. Individual variables (such as a particular stress component) can be
requested.

Depending on the type of output expected, a HistoryRegion object can be defined for one of
the following:

• a node
• an integration point
• a region
• the whole model

The output from all history requests that relate to a particular point or region is then collected in
one HistoryRegion object. Figure 10–4 shows the history output data object model within an output
database.

10–10

Abaqus ID:
Printed on:

COMPILING AND LINKING YOUR C++ SOURCE CODE

steps

historyRegions

 = Container
 = Singular object

odb
rootAssembly

parts

sections

Model Data

Results Data

frames

fieldValues
fieldOutputs

materials

Figure 10–3 The field output data object model.

steps

frames

 = Container
 = Singular object

odb
rootAssembly

parts

data

sections

Model Data

Results Data

historyRegions
point

historyOutputs

fieldOutputs

materials

Figure 10–4 The history output data.

10.6 Compiling and linking your C++ source code

Sample postprocessing programs to perform commonly exercised tasks are presented in separate
sections in this chapter. These and other C++ postprocessing programs must be compiled and linked
using the make parameter when running the Abaqus execution procedure (see “Making user-defined
executables and subroutines,” Section 3.2.18 of the Abaqus Analysis User’s Guide). To link properly,

10–11

Abaqus ID:
Printed on:

ACCESSING THE C++ INTERFACE FROM AN EXISTING APPLICATION

the programs cannot contain a C++ main routine. Instead, the programs must begin with a C++ function
called ABQmain.

#include <odb_API.h>

int ABQmain(int argc, char **argv)
{

//Insert user code here
return 0

}

The arguments passed into the program upon execution will be passed into ABQmain as though it were
the standard C++ main function. The compile and link commands used by the abaqus make utility are
determined by the settings of the compile_cpp and link parameters in the Abaqus environment file.

10.7 Accessing the C++ interface from an existing application

This section provides information that may be helpful to users who need to access results in an output
database from an existing application. Most users should find that the abaqus make utility is sufficient
for their postprocessing needs. Since linking and executing with dynamically linked runtime libraries
is highly system dependent, the information in this section is intended for users who have an advanced
working knowledge of compilation and linking with runtime libraries.

It is important to ensure that the compiler used to compile and link the existing application
is consistent with the compilers used to generate the Abaqus release. The “System Requirements”
document lists the name and version of the compiler used for the Abaqus release on each
supported platform. You can access this document through the System Information section of
the Support page at www.3ds.com/simulia. You can also find information on compiling and
linking with the C++ interface to an output database in the Dassault Systèmes Knowledge Base at
www.3ds.com/support/knowledge-base.

The following topics are covered in this section:

• “Initializing the C++ interface,” Section 10.7.1
• “Link library location,” Section 10.7.2
• “Runtime library location,” Section 10.7.3
• “Header file location,” Section 10.7.4

10.7.1 Initializing the C++ interface
Before any calls are made to the C++ interface, the following call must be made to initialize the interface:

odb_initializeAPI();

10–12

Abaqus ID:
Printed on:

ACCESSING THE C++ INTERFACE FROM AN EXISTING APPLICATION

This call is generated automatically when the abaqus make utility is run but must be included in any
application that is not compiled and linked using the abaqus make utility. After all calls to the C++
interface have been completed, the interface may be deactivated by including a call to

odb_finalizeAPI();

If the finalization call is not made explicitly, the finalize routine will be called automatically when
the application exits.

10.7.2 Link library location
The libraries necessary to link applications that access the C++ interface are located in the following
directories:

Linux

abaqus_dir/code/lib

Windows

abaqus_dir\code\lib

where abaqus_dir is the name of the directory in which Abaqus is installed. To determine the location
of abaqus_dir at your site, type abaqus whereami at an operating system prompt.

During linking, the ABQodb library and several other libraries shipped with the Abaqus release are
used to resolve all the functions available in the interface to the output database. The command used
by Abaqus to link runtime libraries (for example, for user subroutines) is available through the Abaqus
environment variable link_sl. Additional information about linking with the Abaqus libraries, including
the names of all libraries which must be specified as part of the link command, may be obtained by
running the abaqus make utility in verbose mode with a verbosity level of 3.

10.7.3 Runtime library location
The runtime libraries required to execute a program that accesses the C++ interface are located in the
following directories:

Linux

abaqus_dir/code/bin

Windows

abaqus_dir\code\bin

where abaqus_dir is the name of the directory in which Abaqus is installed. To determine the location
of abaqus_dir at your site, type abaqus whereami at an operating system prompt.

10–13

Abaqus ID:
Printed on:

THE Abaqus C++ API ARCHITECTURE

The correct path to the Abaqus runtime libraries must be specified prior to starting the user
application. The runtime library path is typically set using the system environment variable
LD_LIBRARY_PATH, but the method used to set the path may vary depending on your operating
system configuration. The ABQodb library and several utility libraries resolve all the functions
available in the interface to the output database, as described in “Link library location,” Section 10.7.2.
At runtime these libraries depend on many of the underlying Abaqus libraries. As a result, if you do not
define the correct runtime library path, your application will not run.

10.7.4 Header file location

The header files required to compile a program that accesses the C++ interface are located in the following
directories:

Linux

abaqus_dir/code/include

Windows

abaqus_dir\code\include

where abaqus_dir is the name of the directory in which Abaqus is installed. To determine the location
of abaqus_dir at your site, type abaqus whereami at an operating system prompt.

Only odb_API.h must be included to access the C++ interface, but the path to the header files
must be provided during compilation.

10.8 The Abaqus C++ API architecture

This section describes the architecture of the Abaqus C++ interface to an output database. The output
database is an object-oriented database, which means that the data are held by “objects” (C++ classes)
that have certain behavior (C++ methods). The methods of an object in the database allow access to
and manipulation of the data held by the object. The data members of an object can be either primitives
(integer, floating point, string) or other objects.

The following topics are covered:

• “Class naming convention,” Section 10.8.1
• “Constructors,” Section 10.8.2
• “Header files,” Section 10.8.3

10–14

Abaqus ID:
Printed on:

THE Abaqus C++ API ARCHITECTURE

10.8.1 Class naming convention
All class names start with odb_ to avoid possible name clashes. For example, the string class is named
odb_String.

10.8.2 Constructors
A constructor is a method that creates an object. The Abaqus C++ API uses the following three types of
constructors:

Constructors for nonpersistent objects

Constructors for nonpersistent objects are the standard C++ constructors. For example,

odb_String partName("New_Part");

Constructors for persistent objects

You create a persistent object by calling a method on an existing Abaqus C++ API object. In Abaqus
the convention is that the constructor method name corresponds to the name of the object created
and that the first letter of the constructor name is capitalized. The object can be accessed using the
return value of the constructor call or using a lowercase version of the method name. For example,
a Frame object can be created using the following:

odb_Frame s1_writeFrame2 = step1.Frame(2, 1.3,
"frame 2 of step1 at time 1.3");

The Frame object can be retrieved with the following:

odb_Frame& s1_readFrame2 = step1.frames(1);

Constructors for objects created in large quantities

For efficiency the constructors for objects that you create in large quantities, such as elements,
nodes, and field values, do not follow the capitalized constructor name rule used for persistent
objects. Nodes, elements, and field values are created using the addNodes, addElements,
and addData methods, respectively. For example, you use the addNodes method to create and
retrieve nodes:

part1.addNodes(nodeLabels, coordinates, nodeSetName);
const odb_SequenceNode& nodeSeq = part1.nodes();

10–15

Abaqus ID:
Printed on:

UTILITY INTERFACE

odb_Node node1 = part1.nodes(1);

10.8.3 Header files
To use a class in a C++ program, the relevant header files must be included. The naming convention
followed is that the file name is the same as the name of the class declared in the header file. For example,
the odb_FieldValue object is declared in the file odb_FieldValue.h. The file odb_API.h includes
all the header files required to use the API. Other header files must be included to use some classes:

• To access material objects you must include the file odb_MaterialTypes.h.
• To access section objects you must include the file odb_SectionTypes.h.

10.9 Utility interface

The Abaqus C++ API provides a set of utilities that allow a user to access certain commonly used
functionality (such as strings, sequences (lists), and repositories) quickly and easily using a set of
supported and maintained interfaces.

The following topics are covered:

• “Utility interface classes,” Section 10.9.1
• “Utility interface examples,” Section 10.9.2

10.9.1 Utility interface classes
The following interface classes are provided:

Strings

The odb_String object provides a convenient means of storing and passing strings. The odb_String
object also provides a simple interface to append and modify the data stored in the string.

Sequences

An odb_Sequence class is a container used to hold an ordered list of objects of a specific type. Data
can be appended and retrieved from the sequence.

The following odb_Sequence objects are provided to store integer, float, and enumeration data:

• odb_SequenceInt
• odb_SequenceFloat
• odb_SequenceString
• odb_SequenceInvariant
• odb_SequenceElementFace

10–16

Abaqus ID:
Printed on:

UTILITY INTERFACE

Sequences of sequences are also available in the following forms:

• odb_SequenceSequenceFloat
• odb_SequenceSequenceSequenceFloat
• odb_SequenceSequenceInt
• odb_SequenceSequenceElementFace

The following Abaqus objects are also stored as sequences:

• odb_SequenceNode
• odb_SequenceElement
• odb_SequenceFieldValue
• odb_SequenceFrame
• odb_SequenceSectionPoint
• odb_SequenceLoadCase

The following Abaqus object can be collected in a sequence for utility operations:

• odb_SequenceFieldOutput

Repositories

Repositories are provided to store objects retrieved by name. Both the repositories and the content of
the repositories are created by the API; the user can only retrieve objects from repositories. Iterators
are provided to navigate the repositories.

The following Abaqus repositories are provided:

• odb_PartRepository
• odb_FieldOutputRepository
• odb_SectionCategoryRepository
• odb_HistoryRegionRepository
• odb_SetRepository
• odb_HistoryOutputRepository
• odb_StepRepository
• odb_InstanceRepository

More detail on these interface utility objects can be found in Chapter 61, “Odb commands,” of the Abaqus
Scripting Reference Guide.

10.9.2 Utility interface examples
The following examples demonstrate the utility interface for each of the utility interface classes
discussed:

10–17

Abaqus ID:
Printed on:

UTILITY INTERFACE

Strings

odb_String type = stressField.baseElementTypes()[0];
odb_String elementType =

odb_String("Element type is ") + type;
cout << elementType.CStr() << endl;

Sequences

odb_Set& mySurface = rootAssy.surfaces()["TARGET"];
const odb_String instanceName = "PART-1-1";
const odb_SequenceElementFace allFaces =

mySurface.faces(instanceName);
odb_SequenceSequenceElementFace newFaces;
int allFaces_size = allFaces.size();
for (int i=0; i<allFaces_size; i++) {

const odb_SequenceElementFace fList = allFaces[i];
odb_SequenceElementFace newList;
int fList_size = fList.size();
for (int j=0; j<fList_size; j++) {

const odb_Enum::odb_ElementFaceEnum face = fList[j];
newList.append(face);

}
newFaces.append(newList);

}

Repositories

odb_StepRepository stepCon = odb.steps();
odb_StepRepositoryIT iter (stepCon);
for (iter.first(); !iter.isDone(); iter.next()) {

cout << "step name : " << iter.currentKey().CStr() << endl;
const odb_Step& step = iter.currentValue();
cout << "step description : " << step.description().CStr();
cout << endl;

}

10–18

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

10.10 Reading from an output database

The following sections describe how you use Abaqus C++ API commands to read data from an output
database. The following topics are covered:

• “The Abaqus/CAE Visualization module tutorial output database,” Section 10.10.1
• “Making the Odb commands available,” Section 10.10.2
• “Opening an output database,” Section 10.10.3
• “Reading model data,” Section 10.10.4
• “Reading results data,” Section 10.10.5
• “Reading field output data,” Section 10.10.6
• “Using bulk data access to an output database,” Section 10.10.7
• “Using regions to read a subset of field output data,” Section 10.10.8
• “Reading history output data,” Section 10.10.9
• “An example of reading field data from an output database,” Section 10.10.10

10.10.1 The Abaqus/CAE Visualization module tutorial output database
The following sections describe how you can access the data in an output database. Examples
are included that refer to the Abaqus/CAE Visualization module tutorial output database,
viewer_tutorial.odb. This database is generated by the input file from Case 2 of the
example problem, “Indentation of an elastomeric foam specimen with a hemispherical punch,”
Section 1.1.4 of the Abaqus Example Problems Guide. The problem studies the behavior of a soft
elastomeric foam block indented by a heavy metal punch. The tutorial shows how you can use the
Visualization module to view the data in the output database. The tutorial describes how you can choose
the variable to display, how you can step through the steps and frames in the analysis, and how you can
create X–Y data from history output.

You are encouraged to copy the tutorial output database to a local directory and experiment with
the Abaqus C++ API. The output database and the example scripts from this guide can be copied to the
user’s working directory using the abaqus fetch utility:

abaqus fetch job=name

where name.C is the name of the program or name.odb is the name of the output database (see
“Fetching sample input files,” Section 3.2.17 of the Abaqus Analysis User’s Guide). For example, use
the following command to retrieve the tutorial output database:

abaqus fetch job=viewer_tutorial

10–19

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

10.10.2 Making the Odb commands available

To make the Odb commands available to your program, you first need to include the output database
interface classes using the following statement:

#include <odb_API.h>

To make the material and section Odb commands available to your program, you also need to include
their output database classes:

#include <odb_MaterialTypes.h>
#include <odb_SectionTypes.h>

10.10.3 Opening an output database

You use the openOdbmethod to open an existing output database. For example, the following statement
opens the output database used by the Abaqus/CAE Visualization module tutorial:

odb_Odb& odb = openOdb("viewer_tutorial.odb");

After you open the output database, you can access its contents using the methods and members of the
Odb object returned by the openOdb method. In the above example the Odb object is referred to by the
variable odb. For a full description of the openOdb command, see “openOdb,” Section 61.32.5 of the
Abaqus Scripting Reference Guide.

10.10.4 Reading model data

The following list describes the objects in model data and the commands you use to read model data.
Many of the objects are repositories, and you will find it useful to use the repository iterators to determine
the keys of the repositories. For more information on repositories and sequences, see “Utility interface,”
Section 10.9.

The root assembly

An output database contains only one root assembly. You access the root assembly through the
OdbAssembly object.

odb_Assembly& rootAssy = odb.rootAssembly();

10–20

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

Part instances

Part instances are stored in the instance repository under the OdbAssembly object. The
following statements display the repository keys of the part instances in the tutorial output
database:

odb_InstanceRepositoryIT instIter(rootAssy.instances());
for (instIter.first(); !instIter.isDone(); instIter.next())

cout << instIter.currentKey().CStr() << endl;

The output database contains only one part instance, and the resulting output is

PART-1-1

From a part instance or part you can retrieve the node and element information as follows:

{
odb_Instance& instance1 =

rootAssy.instances()["PART-1-1"];
odb_Enum::odb_DimensionEnum instanceType =

instance1.embeddedSpace();
const odb_SequenceNode& nodeList = instance1.nodes();
int nodeListSize = nodeList.size();
if (instanceType == odb_Enum::THREE_D) {

for (int n=0; n<nodeListSize; n++) {
const odb_Node node = nodeList[n];
int nodeLabel = node.label();
const float* const coord = node.coordinates();
cout << "Xcoord: " << coord[0] << " , Ycoord: "

<< coord[1] << " , Zcoord: " << coord[2] << endl;
}

}
else if((instanceType == odb_Enum::TWO_D_PLANAR) ||

(instanceType == odb_Enum::AXISYMMETRIC)) {
for (int n=0; n<nodeListSize; n++) {

const odb_Node node = nodeList[n];
int nodeLabel = node.label();
const float* const coord = node.coordinates();
cout << "Xcoord: " << coord[0] << " , Ycoord: "

<< coord[1] << endl;
}

}

10–21

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

const odb_SequenceElement& elementList =
instance1.elements();

int elementListSize = elementList.size();
cout << "Element Connectivity Data" << endl;
cout << "Element Label : constituent node labels ..."

<< endl;
int numNodes = 0;
for (int e=0; e<elementListSize; e++) {

const odb_Element element = elementList[e];
int elementLabel = element.label();
cout << elementLabel <<" : ";
odb_String elementType = element.type();
const int* const conn =

element.connectivity(numNodes);
for (int j=0; j<numNodes; j++)

cout << " " << conn[j];
cout << endl;

}
}

Regions

Regions in the output database are OdbSet objects. Regions refer to the part and assembly sets stored
in the output database. A part set refers to elements or nodes in an individual part and appears in
each instance of the part in the assembly. An assembly set refers to the elements or nodes in part
instances in the assembly. A region can be one of the following:

• A node set
• An element set
• A surface
For example, the following statement displays the node sets in the OdbAssembly object:

cout << "Node set keys:" << endl;
odb_SetRepositoryIT setIter(rootAssy.nodeSets());
for (setIter.first(); !setIter.isDone(); setIter.next())

cout << setIter.currentKey().CStr() << endl;

The resulting output is

Node set keys:
ALL NODES

10–22

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

The following statements display the node sets and the element sets in the PART-1-1 part instance:

{
odb_InstanceRepository& iCon =

odb.rootAssembly().instances();
odb_Instance& instance = iCon["PART-1-1"];

cout << "Node set keys:" << endl;
odb_SetRepositoryIT setItN(instance.nodeSets());
for (setItN.first(); !setItN.isDone(); setItN.next())
cout << setItN.currentKey().CStr() << endl;

cout << "Element set keys:" << endl;
odb_SetRepositoryIT setItE(instance.elementSets());
for (setItE.first(); !setItE.isDone(); setItE.next())

cout << setItE.currentKey().CStr() << endl;
}

The resulting output is

Node set keys:
BOT
N481
TOP
N1
...
Element set keys:
CENT
FOAM
...

The following statement assigns a variable (topNodeSet) to the ’TOP’ node set in the PART-
1-1 part instance:

odb_InstanceRepository& iCon =
odb.rootAssembly().instances();

odb_Instance& instance = iCon["PART-1-1"];
odb_Set& topNodeSet = instance.nodeSets()["TOP"];

The type of the object to which topNodeSet refers is OdbSet. After you create a variable that
refers to a region, you can use the variable to refer to a subset of field output data, as described in
“Using regions to read a subset of field output data,” Section 10.10.8.

10–23

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

To access the set information on a part instance:

// node set information

odb_Set& nodeSet = instance.nodeSets()["CENTER"];
const odb_SequenceNode& nodeList = nodeSet.nodes();

// surface information
odb_Set& surface = instance.surfaces()["IMPACTOR"];
const odb_SequenceElement& elementList =

surface.elements();
const odb_SequenceElementFace& faces =

surface.faces();

// iterators are used to get all sets
odb_SetRepository& elementSetRepository =

instance.elementSets();
odb_SetRepositoryIT elSetRepIter(elementSetRepository);
for (elSetRepIter.first(); !elSetRepIter.isDone();
elSetRepIter.next()) {

odb_Set& set =
elementSetRepository[elSetRepIter.currentKey()];

cout << "element set " << elSetRepIter.currentKey().CStr()
<< endl;

cout << " number of elements : ";
cout << set.size() << endl;

}

The set information in an assembly set is keyed by instance name and can be accessed using
the following:

// assembly surface information
odb_Set& aSurface = rootAssy.surfaces()["TARGET"];
odb_SequenceString instanceNames =

aSurface.instanceNames();
int totalNames = instanceNames.size();
for (int name=0; name<totalNames; name++) {

const odb_String& iName = instanceNames[name];
const odb_SequenceElement& els =

aSurface.elements(iName);
const odb_SequenceElementFace& face =

aSurface.faces(iName);

10–24

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

}

Materials

You can read material data from an output database.
Materials are stored in the materials repository under the Odb object.

Extend the Material commands available to the Odb object using the following statement:

odb_MaterialApi materialApi;
odb.extendApi(odb_Enum::odb_MATERIAL,materialApi);

Access the materials repository using the command:

odb_MaterialContainer& materialContainer = materialApi.materials();
odb_MaterialContainerIT matIT(materialContainer);
for (matIT.first(); !matIT.isDone(); matIT.next()) {

cout << "Material Name : " << matIT.currentKey().CStr() << endl;
const odb_Material& myMaterial = matIT.currentValue();

To print isotropic elastic material properties in a material object:

odb_Elastic elastic = myMaterial.elastic();
if (elastic.hasValue()) {

if (elastic.type() == "ISOTROPIC") {
cout << "isotropic elastic behavior, type = "

<< elastic.moduli().CStr() << endl;
odb_String tableHeader("Youngs modulus Poisson's ratio ");
if (elastic.temperatureDependency())

tableHeader.append("Temperature ");
for (int i = 0, max = elastic.dependencies(); i < max; ++i)

tableHeader.append(" field # ").append(i);
cout << tableHeader.CStr() << endl;
odb_SequenceSequenceFloat table = elastic.table();
for (int r = 0, rows = table.size(); r <rows; ++r) {

const odb_SequenceFloat& data = table[r];
for (int c = 0, cols = data.size(); c < cols; ++c) {

cout << data[c] << " ";
}
cout << endl;

}
}

}

Some Material definitions have suboptions. For example, to access the smoothing type used
for biaxial test data specified for a hyperelastic material:

odb_Hyperelastic hyperelastic = myMaterial.hyperelastic();
if (hyperelastic.hasValue()) {

bool testData = hyperelastic.testData();

10–25

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

odb_BiaxialTestData biaxialTestData =
hyperelastic.biaxialTestData();

odb_String smoothingType("smoothing type: ");
if (biaxialTestData.hasValue()) {

odb_Union smoothing = biaxialTestData.smoothing();
switch(smoothing.type()) {

case (odb_UNION_STRING):
smoothingType.append(smoothing.getString());
break;

case (odb_UNION_INT):
smoothingType.append(smoothing.getInt());
break;

case (odb_UNION_FLOAT):
smoothingType.append(smoothing.getFloat());
break;

case (odb_UNION_DOUBLE):
smoothingType.append(smoothing.getDouble());
break;

case (odb_UNION_BOOL):
smoothingType.append(smoothing.getBool());
break;

}
cout << smoothingType.CStr() << endl;

}
}

Chapter 60, “Material commands,” of the Abaqus Scripting Reference Guide, describes the
Material object commands in more detail; the odb_Union object is defined in “Union object,”
Section 64.6 of the Abaqus Scripting Reference Guide.

Sections

You can read section data from an output database.
Sections are stored in the sections repository under the Odb object.

Extend the Section commands available to the Odb object using the following statement:

odb_SectionApi sectionApi;
odb.extendApi(odb_Enum::odb_SECTION,sectionApi);

The following statements display the repository keys of the sections in an output database:

odb_SectionContainer& sectionContainer =
sectionApi.sections();

odb_SectionContainerIT scIT(sectionContainer);
for (scIT.first(); !scIT.isDone(); scIT.next()) {

10–26

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

cout << "Section Name : " << scIT.currentKey().CStr() << endl;
}

The Section object can be one of the various section types. The odb_isAmethod can be used
to determine the section type. For example, to determine whether a section is of type “homogeneous
solid section” and to print it’s thickness and associated material name:

for (scIT.first(); !scIT.isDone(); scIT.next()) {
const odb_Section& mySection = scIT.currentValue();
if (odb_isA(odb_HomogeneousSolidSection,mySection)) {

odb_HomogeneousSolidSection homogeneousSolidSection =
odb_dynamicCast(

odb_HomogeneousSolidSection, mySection);
odb_String material =

homogeneousSolidSection.material();
cout << "material name = " << material.CStr() << endl;
float thickness = homogeneousSolidSection.thickness();
cout << "thickness = " << thickness << endl;

}
}

Similarily, to access the beam profile repository:

odb_ProfileContainer profileContainer =
sectionApi.profiles();

int numProfiles = sectionApi.numProfiles();
cout << "Total Number of profiles in the ODB: "

<< numProfiles << endl;

The Profile object can be one of the various profile types. The odb_isA method can be used
to determine the profile type. For example, to output the radius of all circular profiles in the odb:

odb_ProfileContainerIT pcIT(profileContainer);
for (pcIT.first(); !pcIT.isDone(); pcIT.next()) {

const odb_Profile& myProfile = pcIT.currentValue();
if (odb_isA(odb_CircularProfile,myProfile)) {

odb_CircularProfile circularProfile =
odb_dynamicCast(odb_CircularProfile, myProfile);

cout << "profile name = " << myProfile.name().CStr()
<< " radius = " << circularProfile.r();

}
}

10–27

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

Section assignments

Section assignments are stored in the sectionAssignments repository under the OdbAssembly
object.
All elements in an Abaqus analysis need to be associated with section and material properties.
Section assignments provide the relationship between elements in a part instance and their
section properties. The section properties include the associated material name. To access the
sectionAssignments repository from the PartInstance object:

odb_InstanceRepository& instanceRepository =
odb.rootAssembly().instances();

odb_InstanceRepositoryIT instIT(instanceRepository);
for (instIT.first(); !instIT.isDone(); instIT.next()) {

const odb_Instance& instance = instIT.currentValue();
odb_SequenceSectionAssignment sectionAssignmentSeq =

instance.sectionAssignments();
int sects = sectionAssignmentSeq.size();
cout << "Instance : " << instance.name().CStr() << endl;
for (int s = 0; s < sects; ++s) {

odb_SectionAssignment sa = sectionAssignmentSeq[s];
odb_String sectionName = sa.sectionName();

cout << " Section : " << sectionName.CStr() << endl;
odb_Set set = sa.region();
const odb_SequenceElement& elements = set.elements();
int size = elements.size();

cout << " Elements associated with this section : "
<< endl;

for (int e = 0; e< size; ++e)
cout << elements[e].label() << endl;

}
}

10.10.5 Reading results data

The following list describes the objects in results data and the commands you use to read results data. As
with model data you will find it useful to use the repository iterators to determine the keys of the results
data repositories.

Steps

Steps are stored in the steps repository under the Odb object. The key to the steps repository
is the name of the step. The following statements print out the keys of each step in the repository:

10–28

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

odb_StepRepositoryIT stepIter(odb.steps());
for (stepIter.first(); !stepIter.isDone();
stepIter.next())

cout << stepIter.currentKey().CStr() << endl;

The resulting output is

Step-1
Step-2
Step-3

Frames

Each step contains a sequence of frames, where each increment of the analysis (or each mode in an
eigenvalue analysis) that resulted in output to the output database is called a frame. The following
statement assigns a variable to the last frame in the first step:

odb_Step& step = odb.steps()["Step-1"];
odb_SequenceFrame& allFramesInStep = step.frames();
int numFrames = allFramesInStep.size();
odb_Frame& lastFrame = allFramesInStep[numFrames-1];

10.10.6 Reading field output data
Field output data are stored in the fieldOutputs repository under the OdbFrame object. The key to
the repository is the name of the variable. The following statements list all the variables found in the last
frame of the first step (the statements use the variable lastFrame that we defined previously):

odb_FieldOutputRepository& fieldOutputRep =
lastFrame.fieldOutputs();

odb_FieldOutputRepositoryIT fieldIter(fieldOutputRep);
for (fieldIter.first(); !fieldIter.isDone(); fieldIter.next())

cout << fieldIter.currentKey().CStr() << endl;

S
U
LE
CSHEAR1 ASURF/BSURF
CSLIP1 ASURF/BSURF

10–29

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

CPRESS ASURF/BSURF
COPEN ASURF/BSURF
UR3

Different variables can be written to the output database at different frequencies. As a result, not all
frames will contain all the field output variables.

You can use the following to view all the available field data in a frame:

for (fieldIter.first(); !fieldIter.isDone();
fieldIter.next()) {
odb_FieldOutput& field =

fieldOutputRep[fieldIter.currentKey()];
const odb_SequenceFieldValue& seqVal = field.values();
const odb_SequenceFieldLocation& seqLoc =

field.locations();
cout << field.name().CStr() << " : " << field.description().CStr()
<< endl;
cout << " Type: " << field.type() << endl;
int numLoc = seqLoc.size();
for (int loc = 0; loc<numLoc; loc++){

cout << "Position: "<<seqLoc.constGet(loc).position();
}
cout << endl;

}

The resulting print output lists all the field output variables in a particular frame, along with their type
and position.

S : Stress components
Type: 7
Number of fieldValues : 135
Number of locations : 1

U : Spatial displacement
Type: 3
Number of fieldValues : 161
Number of locations : 1

In turn, a FieldOutput object has a method values that returns a reference to a sequence of
FieldValue objects that contain data. Each FieldValue object in the sequence corresponds to a particular
location in the model. You can obtain the data corresponding to each FieldValue object using the data
method, which returns a pointer to an array that contains the results at the current location. For example,

10–30

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

const odb_SequenceFieldValue& displacements =
lastFrame.fieldOutputs()["U"].values();

int numValues = displacements.size();
int numComp = 0;
for (int i=0; i<numValues; i++) {

const odb_FieldValue val = displacements[i];
cout << "Node = " << val.nodeLabel();
const float* const U = val.data(numComp);
cout << ", U = ";
for (int comp=0;comp<numComp;comp++)

cout << U[comp] << " ";
cout << endl;

}

The resulting output is

Node = 1 U[x] = 0.0000, U[y] = -76.4580
Node = 3 U[x] = -0.0000, U[y] = -64.6314
Node = 5 U[x] = 0.0000, U[y] = -52.0814
Node = 7 U[x] = -0.0000, U[y] = -39.6389
Node = 9 U[x] = -0.0000, U[y] = -28.7779
Node = 11 U[x] = -0.0000, U[y] = -20.3237...

The data in the FieldValue object depend on the field output variable, which is displacement in the above
example. In the example above the field output for displacements was of type NODAL and there is a
FieldValue object for the output at each node. In this case the data method returns a pointer to an array
containing the displacements at the node. For INTEGRATION_POINT data each integration point in an
element will correspond to a different FieldValue object, and the data method will return a pointer to an
array containing the element results data at that particular integration point.

Note: Access to field data using the FieldValue object will be deprecated in future releases of the
C++ version of the Abaqus Scripting Interface because of the improved performance of the bulk data
access method. For more information, see “FieldBulkData object,” Section 61.5 of the Abaqus Scripting
Reference Guide, and “Using bulk data access to an output database,” Section 10.10.7.

10.10.7 Using bulk data access to an output database
If you need to access all the data in a field from an output database, you can use the bulkDataBlocks
method of the FieldOutput object to read the data in bulk form. The bulkDataBlocksmethod returns
a reference to a sequence of FieldBulkData objects, each of which contains the entire output for a class
of nodes or elements, blocked together into an array.

10–31

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

The data method of the FieldBulkData object returns an array of data corresponding to the output
for the entire class of elements or nodes. The length and width methods of theFieldBulkData object
return the number of output locations and the number of components at each output location, respectively.
For example,

odb_FieldOutput& disp = lastFrame.fieldOutputs()["U"];
const odb_SequenceFieldBulkData& seqDispBulkData =

disp.bulkDataBlocks();
int numDispBlocks = seqDispBulkData.size();
for (int iblock=0; iblock<numDispBlocks; iblock++) {

const odb_FieldBulkData& bulkData =
seqDispBulkData[iblock];

int numNodes = bulkData.length();
int numComp = bulkData.width();
float* data = bulkData.data();
int* nodeLabels = bulkData.nodeLabels();
for (int node=0,pos=0; node<numNodes; node++) {

int nodeLabel = nodeLabels[node];
cout << "Node = " << nodeLabel;

cout << " U = ";
for (int comp=0;comp<numComp;comp++)

cout << data[pos++] << " ";
cout << endl;

}
}

The numberOfElements method returns the number of elements in a block. When you
are accessing the results for elements, the numberOfElements method is useful in determining
the number of output locations per element. For example, when you are accessing element data at
integration points, you may need to determine the number of integration points per element. You can
determine the number of integration points per element by dividing the length of the block, which is the
total number of output locations, by the number of elements in the block. For example,

odb_FieldOutput& stress = lastFrame.fieldOutputs()["S"];
const odb_SequenceFieldBulkData& seqStressBulkData =

stress.bulkDataBlocks();
int numStressBlocks = seqStressBulkData.size();
for (int jblock=0; jblock<numStressBlocks; jblock++) {

const odb_FieldBulkData& bulkData =
seqStressBulkData[jblock];

10–32

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

int numValues = bulkData.length();
int numComp = bulkData.width();
float* data = bulkData.data();
int nElems = bulkData.numberOfElements();
int numIP = numValues/nElems;
int* elementLabels = bulkData.elementLabels();
int* integrationPoints = bulkData.integrationPoints();
const odb_SectionPoint& myBulkSectionPoint =

bulkData.sectionPoint();
int sectPoint = myBulkSectionPoint.number();
if (sectPoint)

cout << "Section Point: " << sectPoint << endl;
cout << "Base Element type: "

<< bulkData.baseElementType().CStr() << endl;
for (int elem = 0, ipPosition=0, dataPosition=0;
elem<numValues; elem+=numIP) {

cout << "El label: " << elementLabels[elem] << endl;
for (int ip = 0; ip<numIP; ip++) {

cout << "Int. Point: "
<< integrationPoints[ipPosition++] << endl;
cout << "S = ";
for (int comp = 0; comp<numComp; comp++)

cout << " " << data[dataPosition++] << " ";
cout << endl;

}
}

}

For more information, see “FieldBulkData object,” Section 61.5 of the Abaqus Scripting Reference
Guide.

The bulkDataBlocks method is an alternative to the values method of a FieldOutput object,
described in “Reading field output data,” Section 10.10.6. The values method of a FieldOutput object
returns a reference to a sequence of FieldValue objects that contain data. Each FieldValue object in the
sequence provides data for a unique location in the model.

Performance can be increased with the bulk data interface because the field data stored in a bulk
data block are made available in a single array of floating point numbers. If you access the same data
in nonbulk form, you must loop over a sequence of FieldValue objects and then access the data for each
location separately. Traversing an array can prove to be significantly faster than traversing a sequence of
objects and extracting data stored within the objects. As a result, accessing the data in an output database
using the bulk data interface can be significantly faster than the nonbulk form.

10–33

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

If you do not need to access large amounts of data, you may get better performance with the nonbulk
access method. This is especially true if the number of output locations you are accessing is smaller than
the number of elements in a class. Similarly, the nonbulk access method may be faster if the number of
nodes you are accessing is smaller than the number of nodes in an instance. The nonbulk access method
is also better suited for random access to an output database, where successive output locations to be
accessed may lie in completely different blocks.

10.10.8 Using regions to read a subset of field output data
After you have created an OdbSet object using model data, you can use the getSubsetmethod to read
only the data corresponding to that region. Typically, you will be reading data from a region that refers to
a node set or an element set. For example, the following statements create a variable called center that
refers to the node set PUNCH at the center of the hemispherical punch. In a previous section you created
the displacement variable that refers to the displacement of the entire model in the final frame of the
first step. Now you use the getSubset command to get the displacement for only the center region.

odb_Set& center = instance.nodeSets()["PUNCH"];
odb_FieldOutput& fieldU = lastFrame.fieldOutputs()["U"];
odb_FieldOutput centerDisp = fieldU.getSubset(center);
const odb_SequenceFieldValue& centerValues =

centerDisp.values();
const odb_FieldValue val = centerValues.value(0);
const float* const data = val.data(numComp);
cout << " Node: " << val.nodeLabel() << endl;
cout << " U = ";
for (int comp=0;comp<numComp;comp++)

cout << data[comp] << " ";
cout << endl;

The resulting output is

Node: 1000
U = 0.0000 -76.4555

The arguments to getSubset are a region, an element type, a position, or section point data. The
following is a second example that uses an element set to define the region and generates formatted
output for the stress at integration points for CAX4 elements from the element set "CENT":

odb_Set& topCenter = instance.elementSets()["CENT"];
odb_Step& step2 = odb.steps()["Step-2"];

10–34

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

odb_String CAX4 = "CAX4";
odb_FieldOutput& stressField =

step2.frames(3).fieldOutputs()["S"];
odb_FieldOutput fieldCAX4 = stressField.getSubset(CAX4);
odb_FieldOutput fieldIP =

fieldCAX4.getSubset(odb_Enum::INTEGRATION_POINT);
odb_FieldOutput fieldTopCenter = fieldIP.getSubset(topCenter);
const odb_SequenceFieldValue& vals = fieldTopCenter.values();
int valSize = vals.size();
int dSize = 0;
for (int l=0; l<valSize; l++) {

const odb_FieldValue val = vals[l];
cout << "Element label = " << val.elementLabel();
cout << " Integration Point = " << val.integrationPoint();
cout << endl;
const float* const data = val.data(dSize);

cout << " S : ";
for (int k=0; k < dSize; k++) {

cout << data[k] << " ";
}
cout << endl;

}

The resulting output is

Element label = 1 Integration Point = 1
S : 0.01230 -0.05658 0.00892 -0.00015
Element label = 1 Integration Point = 2
S : 0.01313 -0.05659 0.00892 -0.00106
Element label = 1 Integration Point = 3
S : 0.00619 -0.05642 0.00892 -0.00023
Element label = 1 Integration Point = 4
S : 0.00697 -0.05642 0.00892 -0.00108
Element label = 11 Integration Point = 1
S : 0.01281 -0.05660 0.00897 -0.00146
Element label = 11 Integration Point = 2
S : 0.01183 -0.05651 0.00897 -0.00257
Element label = 11 Integration Point = 3 ...

Possible values for the enumeration for the position are:

• INTEGRATION_POINT

10–35

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

• NODAL
• ELEMENT_NODAL
• CENTROID

If the requested field values are not found in the output database at the specified
odb_Enum::ELEMENT_NODAL or odb_Enum::CENTROID positions, they are extrapolated from
the field data at the odb_Enum::INTEGRATION_POINT position.

10.10.9 Reading history output data
History output is output defined for a single point or for values calculated for a portion of the model as
a whole, such as energy. Depending on the type of output expected, the historyRegions repository
contains data from one of the following:

• a node
• an integration point
• a region
• a material point

Note: History data from an analysis cannot contain multiple points.

The history data object model is shown in Figure 10–5. In contrast to field output, which is
associated with a frame, history output is associated with a step. History output data are stored
in the historyRegions repository under an OdbStep object. Abaqus creates keys to the
historyRegions repository that describe the region; for example,

• ’Node PART-1-1.1000’

• ’Element PART-1-1.2 Int Point 1’

• ’Assembly rootAssembly’

The output from all history requests that relate to a specified point is collected in one HistoryRegion
object. A HistoryRegion object contains multiple HistoryOutput objects. Each HistoryOutput object, in
turn, contains a sequence of (frameValue, value) sequences. In a time domain analysis (domain=TIME)
the sequence is a tuple of (stepTime, value). In a frequency domain analysis (domain=FREQUENCY) the
sequence is a tuple of (frequency, value). In a modal domain analysis (domain=MODAL) the sequence
is a tuple of (mode, value).

In the analysis that generated the Abaqus/CAE Visualization module tutorial output database, the
user asked for the following history output:

At the rigid body reference point (Node 1000)

• U
• V
• A

10–36

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

steps

frames

 = Container
 = Singular object

odb
rootAssembly

parts

data

sections

Model Data

Results Data

historyRegions
point

historyOutputs

fieldOutputs

materials

Figure 10–5 The history data object model.

At the corner element

• MISES
• LE22
• S22

The history output data can be retrieved from the HistoryRegion objects in the output database. The
tutorial output database contains HistoryRegion objects that relate to the rigid body reference point and
the integration points of the corner element as follows:

• ’Node PART-1-1.1000’

• ’Element PART-1-1.1 Int Point 1’

• ’Element PART-1-1.1 Int Point 2’

• ’Element PART-1-1.1 Int Point 3’

• ’Element PART-1-1.1 Int Point 4’

The following statements read the tutorial output database and write the U2 history data from the second
step to an ASCII file that can be plotted by Abaqus/CAE:

odb_Step& step = odb.steps()["Step-2"];
odb_Instance& instance =

10–37

Abaqus ID:
Printed on:

READING FROM AN OUTPUT DATABASE

odb.rootAssembly().instances()["PART-1-1"];
odb_Set& nSet = instance.nodeSets()["PUNCH"];
const odb_Node node = nSet.nodes().constGet(0);
odb_HistoryPoint hPoint(node);
odb_HistoryRegion& histRegion =

step.getHistoryRegion(hPoint);
odb_HistoryOutputRepository& hoCon =

histRegion.historyOutputs();
odb_HistoryOutput& histOutU2 = hoCon["U2"];
odb_SequenceSequenceFloat data = histOutU2.data();
int numHDat = data.size();
for (int i=0; i<numHDat; i++) {

odb_SequenceFloat pair = data[i];
cout << pair.constGet(0) << " "
<< pair.constGet(1) << endl;

}

The output in this example is a sequence of tuples containing the frame time and the displacement value.
The example uses nodal history data output. If the analysis requested history output from an element, the
output database would contain one HistoryRegion object and one HistoryPoint object for each integration
point.

10.10.10 An example of reading field data from an output database
The following program illustrates how you readmodel data and field output data from the output database
used by the Abaqus/CAE Visualization module tutorial output database.

Import the required modules:

#include <iostream.h>
#include <odb_API.h>

Open the output database used by the tutorial.

odb_Odb& odb = openOdb("viewer_tutorial.odb");

Create a variable that refers to the last frame of the first step.

odb_Step& step = odb.steps()["Step-1"];
odb_SequenceFrame& allFramesInStep = step.frames();
int numFrames = allFramesInStep.size();
odb_Frame& lastFrame = allFramesInStep[numFrames-1];

10–38

Abaqus ID:
Printed on:

WRITING TO AN OUTPUT DATABASE

Create a variable that refers to the displacement ’U’ in the last frame of the first step.

odb_FieldOutput& displacements =
lastFrame.fieldOutputs().get("U");

Create a variable that refers to the node set ’PUNCH’ in the part instance’PART-1–1’ :

odb_Instance& instance =
odb.rootAssembly().instances()["PART-1-1"];

odb_Set& nodeSet =
instance.nodeSets()["PUNCH"];

Create a variable that refers to the displacement of the node set in the last frame of the first step:

odb_FieldOutput myDisplacements =
displacements.getSubset(nodeSet);

Finally, print some field output data from each node in the node set (a single node in this example).

const odb_FieldValue val = myDisplacements.values()[0];
const float* const data = val.data(numComp);
cout << " Node: " << val.nodeLabel() << endl;
cout << " U = ";
for (int comp=0;comp<numComp;comp++)

cout << data[comp] << " ";
cout << endl;
cout << " Magnitude = " << val.magnitude();

The resulting output is

Node : 1000
U = 0.0000 , -76.4554
Magnitude = 76.4554

10.11 Writing to an output database

You can write your own data to an output database, and you can use Abaqus/CAE to view the data.
Writing to an output database is very similar to reading from an output database. When you open an
existing database, the Odb object contains all the objects found in the output database, such as instances,
steps, and field output data. In contrast, when you are writing to a new output database, these objects do
not exist. As a result you must use a constructor to create the objects. For example, you use the Part

10–39

Abaqus ID:
Printed on:

WRITING TO AN OUTPUT DATABASE

constructor to create a Part object, the Instance constructor to create an OdbInstance object, and the
Step constructor to create an OdbStep object.

After you create an object, you use methods of the objects to enter or modify the data associated
with the object. For example, if you are creating an output database, you first create an Odb object.
You then use the Part constructor to create a part. After creating the part, you use the addNodes and
addElements methods of the Part object to add nodes and elements, respectively. Similarly, you use
the addData method of the FieldOutput object to add field output data to the output database. After
creating an output database, you should use the save method on the Odb object to save the output
database.

The example program in “Creating an output database,” Section 10.15.2, also illustrates how you
can write to an output database.

The following topics are covered:

• “Creating a new output database,” Section 10.11.1
• “Writing model data,” Section 10.11.2
• “Writing results data,” Section 10.11.3
• “Writing field output data,” Section 10.11.4
• “Default display properties,” Section 10.11.5
• “Writing history output data,” Section 10.11.6

10.11.1 Creating a new output database

You use the Odb constructor to create a new, empty Odb object.

odb_Odb& odb = Odb("myData","derived data",
"test problem", "testWrite.odb");

For a full description of the Odb command, see “Odb object,” Section 61.1 of the Abaqus Scripting
Reference Guide. Abaqus creates the RootAssembly object when you create or open an output database.

You use the save method to save the output database.

odb.save();

For a full description of the save command, see “save,” Section 61.1.4 of the Abaqus Scripting
Reference Guide.

10–40

Abaqus ID:
Printed on:

WRITING TO AN OUTPUT DATABASE

10.11.2 Writing model data
To define the geometry of your model, you first create the parts that are used by the model and then you
add nodes and elements to the parts. You then define the assembly by creating instances of the parts. If
the output database already contains results data, you should not change the geometry of the model. This
is to ensure that the results remain synchronized with the model.

Part

If the part was created by Abaqus/CAE, the description of the native Abaqus/CAE geometry
is stored in the model database, but it is not stored in the output database. A part is stored in
an output database as a collection of nodes, elements, surfaces, and sets. You use the Part
constructor to add a part to the Odb object. You can specify the type of the part; however, only
DEFORMABLE_BODY is currently supported. For example,

odb_Part& part1 = odb.Part("part-1",
odb_Enum::THREE_D, odb_Enum::DEFORMABLE_BODY);

For a full description of the Part constructor, see “OdbPart object,” Section 61.20 of the Abaqus
Scripting Reference Guide. The new Part object is empty and does not contain geometry. After you
create the Part object, you then add nodes and elements.

You use the addNodes method to add nodes by defining node labels and coordinates. You
can also define an optional node set. For example,

odb_SequenceInt nodeLabels;
nodeLabels.append(1);
nodeLabels.append(2);
nodeLabels.append(3);
nodeLabels.append(5);
nodeLabels.append(7);
nodeLabels.append(11);
double c[6][3] = { {2.0, 1.0, 0.0},

{1.0, 1.0, 0.0},
{1.0, 0.0, 0.0},
{2.0, 0.0, 0.0},
{1.0, 0.0, 1.0},
{2.0, 0.0, 1.0} };

odb_SequenceSequenceFloat nodeCoor;
for (int n=0; n<nodeLabels.size(); n++) {

odb_SequenceFloat loc;

10–41

Abaqus ID:
Printed on:

WRITING TO AN OUTPUT DATABASE

for (int i=0; i<3; i++)
loc.append(c[n][i]);

nodeCoor.append(loc);
}
part1.addNodes(nodeLabels, nodeCoor, "nodes_1");

For a full description of the addNodes command, see “addNodes,” Section 61.20.3 of the Abaqus
Scripting Reference Guide.

Similarly, you use the addElements method to add elements to the part using a sequence
of element labels, element connectivity, and element type. You can also define an optional element
set and an optional section category. For example,

odb_SequenceInt elLabels;
elLabels.append(9);
elLabels.append(99);
odb_SequenceSequenceInt connect;
const int numNodePerEl = 4;
int conn[2][numNodePerEl] = {{1, 2, 3, 5},

{5, 3, 7, 11}};
for (int e=0; e<elLabels.size(); e++) {

odb_SequenceInt l;
for (int i=0; i<numNodePerEl; i++)

l.append(conn[e][i]);
connect.append(l);

}
part1.addElements(elLabels, connect, "S4R",

"s4_els", shellCat);

For a full description of the addElements command, see “addElements,” Section 61.20.2 of the
Abaqus Scripting Reference Guide.

The RootAssembly object

The root assembly is created when you create the output database. You access the RootAssembly
object using the same syntax as that used for reading from an output database.

odb_Assembly& rootAssy = odb.rootAssembly();

You can create both instances and regions on the RootAssembly object.

10–42

Abaqus ID:
Printed on:

WRITING TO AN OUTPUT DATABASE

Part instances

You use the Instance constructor to create part instances of the parts you have already defined
using the Part constructor. For example,

odb_Instance& instanceA =
odb.rootAssembly().Instance("part-1-1", part1);

You can also supply an optional local coordinate system that specifies the rotation and translation
of the part instance. You can add nodes and elements only to a part; you cannot add elements
and nodes to a part instance. As a result, you should create the nodes and elements that define the
geometry of a part before you instance the part. For a full description of the Instance command,
see “OdbInstance object,” Section 61.16 of the Abaqus Scripting Reference Guide.

Regions

Region commands are used to create sets from element labels, node labels, and element faces. You
can create a set on a part, part instance, or the root assembly. Node and element labels are unique
within an instance but not within the assembly. As a result, a set on the root assembly requires
the names of the part instances associated with the nodes and elements. You can also use region
commands to create surfaces.

For example,

// An ElementSet on an instance
odb_SequenceInt eLabelsA(2);
eLabelsA.append(9);
eLabelsA.append(99);
instanceA.ElementSet("elSetA", eLabelsA);

// A NodeSet on the rootAssembly

odb_SequenceSequenceInt nodeLabelsRA;
odb_SequenceString namesRA;
namesRA.append("part-1-1");
odb_SequenceInt nodeLabelsRA_A;
nodeLabelsRA_A.append(5);
nodeLabelsRA_A.append(11);
nodeLabelsRA.append(nodeLabelsRA_A);
const odb_Set& nSetRA = rootAssy.NodeSet("nodeSetRA",

namesRA, nodeLabelsRA);

10–43

Abaqus ID:
Printed on:

WRITING TO AN OUTPUT DATABASE

Materials

You use the Material object to list material properties. Material objects are members of the Odb
object.
Materials are stored in the materials repository under the Odb object.

Extend the Material commands available to the Odb object using the following statement:

odb_MaterialApi materialApi;
odb.extendApi(odb_Enum::odb_MATERIAL,materialApi);

To create an isotropic elastic material, with a Young’s modulus of 12000.0 and an effective
Poisson’s ratio of 0.3 in the output database:

odb_String materialName("Elastic Material");
odb_Material& material = materialApi.Material(materialName);
odb_SequenceSequenceFloat myTable;
odb_SequenceFloat myData;
myData.append(12000.0); myData.append(0.3);
myTable.append(myData);
odb_String type("ISOTROPIC");
material.Elastic(myTable,type);

For more information, see Chapter 60, “Material commands,” of the Abaqus Scripting
Reference Guide.

Sections

You use the Section object to create sections and profiles. Section objects are members of the Odb
object.
Sections are stored in the sections repository under the Odb object.

Extend the API commands available to the Odb object using the following statement:

odb_SectionApi sectionApi;
odb.extendApi(odb_Enum::odb_SECTION,

sectionApi);

The following code creates a homogeneous solid section object. A Material object must be
present before creating a Section object. An exception is thrown if the material does not exist.

odb_String sectionName("Homogeneous Solid Section");
float thickness = 2.0;
odb_HomogeneousSolidSection& mySection =

sectionApi.HomogeneousSolidSection(sectionName,
materialName,
thickness);

10–44

Abaqus ID:
Printed on:

WRITING TO AN OUTPUT DATABASE

To create a circular beam profile object in the output database:

odb_String profileName("Circular Profile");
float radius = 10.00;
sectionApi.CircularProfile(profileName, radius);

Section assignments

You use the SectionAssignment object to assign sections and their associated material properties
to regions of the model. SectionAssignment objects are members of the Odb object. For a full
description of the assignSection method, see “assignSection,” Section 61.16.7 of the Abaqus
Scripting Reference Guide.
All Elements in an Abaqus analysis need to be associated with section and material properties.
Section assignments provide the relationship between elements in an Instance object and their
section properties. The section properties include the associated material name. To create an
element set and assign a section:

odb_SequenceInt setLabels;
setLabels.append(1);
setLabels.append(2);
elsetName = "Material 1";
odb_Set& elset = instance.ElementSet(elsetName,setLabels);
// section assignment on instance
instance.assignSection(elset,section);

10.11.3 Writing results data
To write results data to the output database, you first create the Step objects that correspond to each step
of the analysis. If you are writing field output data, you also create the Frame objects that will contain
the field data. History output data are associated with Step objects.

Steps

You use the Step constructor to create a results step for time, frequency, or modal domain results.
For example,

odb_Step& step1 = odb.Step("s1",
"Perturbation Step", odb_Enum::TIME);

odb_Step& step2 = odb.Step("sT",
"Time domain analysis", odb_Enum::TIME, 1.0);

odb_Step& step3 = odb.Step("sF",
"Frequency analysis", odb_Enum::FREQUENCY, 123.4);

10–45

Abaqus ID:
Printed on:

WRITING TO AN OUTPUT DATABASE

The Step constructor has an optional previousStepName argument that specifies the step after
which this step must be inserted in the steps repository. For a full description of the Step
command, see “Step,” Section 61.25.1 of the Abaqus Scripting Reference Guide.

Frames

You use the Frame constructor to create a frame for field output. For example,

odb_Frame frameOne = step2.Frame(1, 0.3, "first frame");

For a full description of the Frame command, see “Frame,” Section 61.15.3 of the Abaqus Scripting
Reference Guide.

10.11.4 Writing field output data
A FieldOutput object contains a “cloud of data values” (e.g., stress tensors at each integration point for
all elements). Each data value has a location, type, and value. You add field output data to a Frame object
by first creating a FieldOutput object using the FieldOutput constructor and then adding data to the
FieldOutput object using the addData method. For example,

// vector
odb_SequenceString vectorCompLabels;
vectorCompLabels.append("1");
vectorCompLabels.append("2");
vectorCompLabels.append("3");
odb_SequenceInvariant vectorInvar;
vectorInvar.append(odb_Enum::MAGNITUDE);
odb_FieldOutput& vectorField = frameOne.FieldOutput("U",

"displacement vector",
odb_Enum::VECTOR,

vectorCompLabels, vectorInvar);

odb_SequenceInt labels2;
labels2.append(3);
labels2.append(5);
odb_SequenceSequenceFloat vecDat;
odb_SequenceFloat v1;
v1.append(1.1); v1.append(1.2); v1.append(1.3);
vecDat.append(v1);
odb_SequenceFloat v2;

10–46

Abaqus ID:
Printed on:

WRITING TO AN OUTPUT DATABASE

v2.append(2.1); v2.append(2.2); v2.append(2.3);
vecDat.append(v2);

vectorField.addData(odb_Enum::NODAL, instanceA,
labels2, vecDat);

For a full description of theFieldOutput constructor, see “FieldOutput,” Section 61.7.1 of the Abaqus
Scripting Reference Guide.

The type argument to the FieldOutput constructor describes the type of the data—tensor, vector,
or scalar. The properties of the different tensor types are:

Full tensor

A tensor that has six components and three principal values. Full three-dimensional rotation of the
tensor is possible.

Three-dimensional surface tensor

A tensor that has only three in-plane components and two principal values. Full three-dimensional
rotation of the tensor components is possible.

Three-dimensional planar tensor

A tensor that has three in-plane components, one out-of-plane component, and three principal
values. Full three-dimensional rotation of the tensor components is possible.

Two-dimensional surface tensor

A tensor that has only three in-plane components and two principal values. Only in-plane rotation
of the tensor components is possible.

Two-dimensional planar tensor

A tensor that has three in-plane components, one out-of-plane component, and three principal
values. Only in-plane rotation of the tensor components is possible.

The valid components and invariants for the different data types are given in Table 10–1.

Table 10–1 Valid components and invariants for Abaqus data types.

Data type Components Invariants

SCALAR

VECTOR 1, 2, 3 MAGNITUDE

TENSOR_3D_FULL 11, 22, 33, 12, 13, 23 MISES, TRESCA, PRESS, INV3,
MAX_PRINCIPAL, MID_PRINCIPAL,
MIN_PRINCIPAL

10–47

Abaqus ID:
Printed on:

WRITING TO AN OUTPUT DATABASE

Data type Components Invariants

TENSOR_3D_SURFACE 11, 22, 12 MAX_PRINCIPAL, MIN_PRINCIPAL,
MAX_INPLANE_PRINCIPAL,
MIN_INPLANE_PRINCIPAL

TENSOR_3D_PLANAR 11, 22, 33, 12 MISES, TRESCA, PRESS,
INV3, MAX_PRINCIPAL,
MID_PRINCIPAL, MIN_PRINCIPAL,
MAX_INPLANE_PRINCIPAL,
MIN_INPLANE_PRINCIPAL,
OUTOFPLANE_PRINCIPAL

TENSOR_2D_SURFACE 11, 22, 12 MAX_PRINCIPAL, MIN_PRINCIPAL,
MAX_INPLANE_PRINCIPAL,
MIN_INPLANE_PRINCIPAL

TENSOR_2D_PLANAR 11, 22, 33, 12 MISES, TRESCA, PRESS,
INV3, MAX_PRINCIPAL,
MID_PRINCIPAL, MIN_PRINCIPAL,
MAX_INPLANE_PRINCIPAL,
MIN_INPLANE_PRINCIPAL,
OUTOFPLANE_PRINCIPAL

For example, the following statements add element data to the FieldOutput object:

odb_SequenceString tensorCompLabels;
tensorCompLabels.append("s11");
tensorCompLabels.append("s22");
tensorCompLabels.append("s33");
tensorCompLabels.append("s12");
tensorCompLabels.append("s13");
tensorCompLabels.append("s23");
odb_SequenceInvariant tensorInvar;
tensorInvar.append(odb_Enum::MISES);
tensorInvar.append(odb_Enum::TRESCA);
tensorInvar.append(odb_Enum::MAX_PRINCIPAL);
tensorInvar.append(odb_Enum::MID_PRINCIPAL);
tensorInvar.append(odb_Enum::MIN_PRINCIPAL);

odb_FieldOutput& tensorField = frameOne.FieldOutput("S",
"stress tensor",

odb_Enum::TENSOR_3D_FULL,

10–48

Abaqus ID:
Printed on:

WRITING TO AN OUTPUT DATABASE

tensorCompLabels, tensorInvar);

odb_SequenceInt tensorLabels;
tensorLabels.append(9);
tensorLabels.append(99);

odb_SequenceSequenceFloat tensorDat;
odb_SequenceFloat t1;
t1.append(1.0); t1.append(2.0); t1.append(3.0);
t1.append(0.0); t1.append(0.0); t1.append(0.0);
odb_SequenceFloat t2;
t2.append(120.0); t2.append(-55.0); t2.append(-85.0);
t2.append(-55.0); t2.append(-75.0); t2.append(33.0);
tensorDat.append(t1);
tensorDat.append(t2);

tensorField.addData(odb_Enum::CENTROID, instanceA, tensorLabels,
tensorDat, topShell);

For a full description of the addData command, see “addData,” Section 61.7.6 of the Abaqus Scripting
Reference Guide.

As a convenience, localCoordSystem can be a single transform or a list of transforms. If
localCoordSystem is a single transform, it applies to all values. If localCoordSystem is a list of
transforms, the number of items in the list must match the number of data values.

10.11.5 Default display properties
The previous examples show how you can use commands to set the default field variable and deformed
field variable. Abaqus/CAE uses the default field variable setting to determine the variable to display in
a contour plot; for example, stress. Similarly, the default deformed field variable determines the variable
that distinguishes a deformed plot from an undeformed plot. Typically, you will use displacement for the
default deformed field variable; you cannot specify an invariant or a component. The default variable
settings apply for each frame in the step. For example, the following statements use the deformation ’U’
as the default setting for both field variable and deformed field variable settings during a particular step:

step1.setDefaultField(tensorField);
step1.setDefaultDeformedField(vectorField);

You can set a different default field variable and deformed field variable for different steps.

10–49

Abaqus ID:
Printed on:

WRITING TO AN OUTPUT DATABASE

10.11.6 Writing history output data
History output is output defined for a single point or for values calculated for a portion of the model as
a whole, such as energy. Depending on the type of output expected, the historyRegions repository
contains data from one of the following:

• a node
• an element, or a location in an element
• a region

Note: History data from an analysis cannot contain multiple points.

The output from all history requests that relate to a specified point is collected in one HistoryRegion
object. You use the HistoryPoint constructor to create the point. For example,

odb_HistoryPoint hPoint1(instanceA.elements(0));

For a full description of the HistoryPoint command, see “HistoryPoint,” Section 61.10.1 of the
Abaqus Scripting Reference Guide.

You then use the HistoryRegion constructor to create a HistoryRegion object:

odb_HistoryRegion& hr1 = step1.HistoryRegion("ElHist",
"output at element", hPoint1);

For a full description of the HistoryRegion command, see “HistoryRegion,” Section 61.11.1 of the
Abaqus Scripting Reference Guide.

You use the HistoryOutput constructor to add variables to the HistoryRegion object.

odb_HistoryOutput& ho1 = hr1.HistoryOutput("S11",
"one component");

Each HistoryOutput object contains a sequence of (frameValue, value) sequences. The
HistoryOutput object has a method (addData) for adding data. Each data item is a sequence of
(frameValue, value). In a time domain analysis (domain=TIME) the sequence is (stepTime, value). In
a frequency domain analysis (domain=FREQUENCY) the sequence is (frequency, value). In a modal
domain analysis (domain=MODAL) the sequence is (mode, value).

You add the data values as time and data tuples. The number of data items must correspond to the
number of time items. For example,

10–50

Abaqus ID:
Printed on:

EXCEPTION HANDLING IN AN OUTPUT DATABASE

ho1.addData(0.001, 0.1);

// or using two sequences

odb_SequenceFloat timeData;
odb_SequenceFloat values;
timeData.append(0.001);
values.append(0.1);
ho1.addData(timeData, values);

// or using a sequence of sequences
odb_SequenceSequenceFloat s11;
odb_SequenceFloat value1;
value1.append(0.001);
value1.append(0.1);
s11.append(value1);
ho1.addData(s11);

10.12 Exception handling in an output database

Support for C++ exception handling is provided in the API to the output database. For example, in your
C++ program you may wish to customize the error message when an output database was not opened
successfully as follows:

odb_String invalidOdbName = "invalid.odb";
try {

odb_Odb& odb = openOdb(invalidOdbName);
}
catch(odb_BaseException& exc) {

cerr << "odbBaseException caught\n";
cerr << "Abaqus error message: " << exc.UserReport().CStr()
<< endl;
cerr << "Customized error message here\n";

}
catch(...) {

cerr << "Unknown Exception.\n";
}

10–51

Abaqus ID:
Printed on:

COMPUTATIONS WITH Abaqus RESULTS

For more information, see “BaseException object,” Section 64.1 of the Abaqus Scripting Reference
Guide.

10.13 Computations with Abaqus results

The following topics are covered:

• “Rules for the mathematical operations,” Section 10.13.1
• “Valid mathematical operations,” Section 10.13.2
• “Envelope calculations,” Section 10.13.3

10.13.1 Rules for the mathematical operations
Mathematical operations are supported for FieldOutput, FieldValue, and HistoryOutput objects. These
operators allow you to perform linear superposition of Abaqus results or to create more complex derived
results from Abaqus results.

The following rules apply:

• The operations are performed on the components of a tensor or vector.
• The invariants are computed from the component values. For example, taking the absolute value
of a tensor can result in negative values of the pressure invariant.

• Operations between FieldOutput, FieldValue, and HistoryOutput objects are not supported.
• Multiplication and division are not supported between two vector objects nor between two tensor
objects.

• The types in an expression must be compatible. For example,
– A vector cannot be added to a tensor.

– A three-dimensional surface tensor cannot be added to a three-dimensional planar tensor.

– INTEGRATION_POINT data cannot be added to ELEMENT_NODAL data.

• If the fields in the expression were obtained using the getSubsetmethod, the same getSubset
operations must have been applied in the same order to obtain each field.

• Arguments to the trigonometric functions must be in radians.
• Operations on tensors are performed in the local coordinate system, if it is available. Otherwise
the global system is used. Abaqus assumes that the local coordinate systems are consistent for
operations involving more than one tensor.

• Operations between FieldValue objects associated with different locations in the model are allowed
only if the data types are the same. If the locations in the model differ, the FieldValue computed
will not be associated with a location. If the local coordinate systems of the FieldValue objects are

10–52

Abaqus ID:
Printed on:

COMPUTATIONS WITH Abaqus RESULTS

not the same, the local coordinate systems of both fieldValues will be disregarded and the fieldValue
computed will have no local coordinate system.

• The operations will not be performed on the conjugate data (the imaginary portion of a complex
result).

The FieldOutput operations are significantly more efficient than the FieldValue operators. You can
save the computed FieldOutput objects with the following procedure:

• Create a new FieldOutput object in the output database.
• Use the addData method to add the new computed field objects to the new FieldOutput object.

For example,

// Get fields from odb.
odb_StepRepository& stepCon = odb.steps();
odb_SequenceFrame& frameCon1 =

stepCon["Step-1"].frames();
odb_FieldOutputRepository& fieldCon1 =

frameCon1.get(1).fieldOutputs();
odb_SequenceFrame& frameCon2 = stepCon["Step-2"].frames();
odb_FieldOutputRepository& fieldCon2 =

frameCon2.get(1).fieldOutputs();
odb_FieldOutput& field1 = fieldCon1["U"];
odb_FieldOutput& field2 = fieldCon2["U"];

// Compute new field.

odb_FieldOutput deltaDisp = field2 - field1;

// Save new field.

odb_Step& newStep = odb.Step("user", "user defined results",
odb_Enum::TIME,1.0);

odb_Frame newFrame = newStep.Frame(0, 0.0);
odb_FieldOutput& newField = newFrame.FieldOutput("U",

"delta displacements",
odb_Enum::VECTOR);

newField.addData(deltaDisp);

10–53

Abaqus ID:
Printed on:

COMPUTATIONS WITH Abaqus RESULTS

10.13.2 Valid mathematical operations

Table 10–2 describes the abbreviations that are used in mathematical operations.

Table 10–2 Abbreviations.

Abbreviation Allowable values

all FieldOutput objects, FieldValue objects, HistoryVariable
objects, or floating point numbers

float floating point numbers

FO FieldOutput objects

FV FieldValue objects

HO HistoryOutput objects

Table 10–3 shows the valid operations on FieldOutput objects.

Table 10–3 Valid operations.

Symbol Operation Return
value

all + float addition all

FO + FO FO

FV + FV FV

HO + HO HO

-all unary negation all

all - float subtraction all

FO - FO FO

FV - FV FV

FO * FO (only if FO is a
scalar)

multiplication FO

all * float all

FO / FO (only if FO is a
scalar)

division FO

10–54

Abaqus ID:
Printed on:

COMPUTATIONS WITH Abaqus RESULTS

Symbol Operation Return
value

all / float all

abs(all) absolute value all

acos(all) arccosine all

asin(all) arcsine all

atan(all) arctangent all

cos(all) cosine all

degreeToRadian (all) convert degrees to
radians

all

exp(all) natural exponent all

exp10(all) base 10 exponent all

log(all) natural logarithm all

log10(all) base 10 logarithm all

float ** float raise to a power all

power(FO, float) FO

power(FV, float) FV

power(HO, float) HO

radianToDegree (all) convert radian to degree all

sin(all) sine all

sqrt(all) square root all

tan(all) tangent all

complexMagnitude(FO) magnitude of the
complex field output

FO

complexPhase(FO) phase of the complex
field output

FO

complexReal(FO) real part of the complex
field output

FO

complexImag(FO) imaginary part of the
complex field output

FO

10–55

Abaqus ID:
Printed on:

COMPUTATIONS WITH Abaqus RESULTS

10.13.3 Envelope calculations
You use envelope calculations to retrieve the extreme value for an output variable over a number of
fields. Envelope calculations are especially useful for retrieving the extreme values over a number of
load cases.

The following operators consider a list of fields and perform the envelope calculation:

odb_SequenceFieldOutput flds =
maxEnvelope(odb_SequenceFieldOutput& fields);

odb_SequenceFieldOutput flds =
minEnvelope(odb_SequenceFieldOutput& fields);

odb_SequenceFieldOutput flds =
maxEnvelope(odb_SequenceFieldOutput& fields,
odb_Enum::odb_InvariantEnum invariant);

odb_SequenceFieldOutput flds =
minEnvelope(odb_SequenceFieldOutput& fields,
odb_Enum::odb_InvariantEnum invariant);

odb_SequenceFieldOutput flds =
maxEnvelope(odb_SequenceFieldOutput& fields,
const odb_String& componentLabel);

odb_SequenceFieldOutput flds =
minEnvelope(odb_SequenceFieldOutput& fields,
const odb_String& componentLabel);

The envelope commands return two FieldOutput objects.

• The first object contains the requested extreme values.
• The second object contains the indices of the fields for which the extreme values were found. The
indices derive from the order in which you supplied the fields to the command.

The optional invariant argument is a odb_Enum::odb_DataTypeEnum specifying the invariant to be used
when comparing vectors or tensors. The optional componentLabel argument is an odb_String specifying
the component of the vector or tensor to be used for selecting the extreme value.

The following rules apply to envelope calculations:

• Abaqus compares the values using scalar data. If you are looking for the extreme value of a vector
or a tensor, you must supply an invariant or a component label for the selection of the extreme value.
For example, for vectors you can supply theMAGNITUDE invariant and for tensors you can supply
the MISES invariant.

• The fields being compared must be similar. For example,
– VECTOR and TENSOR_3D_FULL fields cannot appear in the same list.

10–56

Abaqus ID:
Printed on:

COMPUTATIONS WITH Abaqus RESULTS

– The output region of all the fields must be the same. All the fields must apply to the whole
model, or all the fields must apply to the same set.

10.13.4 Transformation of results
Transformations of vector and tensor fields are supported for rectangular, cylindrical, and spherical
coordinate systems. The coordinate systems can be fixed or model based. Model-based coordinate
systems refer to nodes for position and orientation. Abaqus uses the coordinates of the deformed state
to determine a systems origin and orientation for model-based coordinate systems. Transformations
that use a model-based coordinate system can account for large displacements of both the coordinate
system and the structure.

The steps required to transform results are:

• Create the coordinate system.
• Retrieve the field from the database.
• Use the fieldOutput.getTransformedFieldmethod to obtain a new field with the results
in the specified coordinate system.

• For large displacement of the structure and coordinate system, you must also retrieve the
displacement field at the frame. You must compute this displacement field for the whole model to
ensure that the required displacement information is available.

The following rules apply to the transformation of results:

• Beams, truss, and axisymmetric shell element results will not be transformed.
• The component directions 1, 2, and 3 of the transformed results will correspond to the system
directions X, Y, and Z for rectangular coordinate systems; R, , and Z for cylindrical coordinate
systems; and R, , and for spherical coordinate systems.

Note: Stress results for three-dimensional continuum elements transformed into a cylindrical
system would have the hoop stress in S22, which is consistent with the coordinate system axis
but inconsistent with the stress state for a three-dimensional axisymmetric elements having hoop
stress in S33.

• When you are transforming a tensor, the location or integration point always takes into account the
deformation. The location of the coordinate system depends on the model, as follows:

– If the system is fixed, the coordinate system is fixed.

– If the system is model based, you must supply a displacement field that determines the
instantaneous location and orientation of the coordinate system.

• Abaqus will perform transformations of tensor results for shells, membranes, and planar elements
as rotations of results about the element normal at the element result location. The element normal
is the normal computed for the frame associated with the field by Abaqus, and you cannot redefine
the normal. Abaqus defines the location of the results location from the nodal locations. You

10–57

Abaqus ID:
Printed on:

IMPROVING THE EFFICIENCY OF YOUR SCRIPTS

specify optional arguments if you want to use the deformed nodal locations to transform results.
For rectangular, cylindrical, and spherical coordinate systems the second component direction for
the transformed results will be determined by one of the following:

– The Y-axis in a rectangular coordinate system.

– The -axis in a cylindrical coordinate system.

– The -axis in a spherical coordinate system.

– A user-specified datum axis projected onto the element plane.

If the coordinate system used for projection and the element normal have an angle less than the
specified tolerance (the default is 30°), Abaqus will use the next axis and generate a warning.

10.14 Improving the efficiency of your scripts

If you are accessing large amounts of data from an output database, you should be aware of potential
inefficiencies in your program and techniques that will help to speed up your scripts.

• “Creating objects to hold loop counters,” Section 10.14.1
• “Creating objects to hold temporary variables,” Section 10.14.2
• “Using references to objects,” Section 10.14.3

10.14.1 Creating objects to hold loop counters
A program can spend a large proportion of its computation time executing statements inside loops. As
a result, you can make your scripts more efficient if you consider how Abaqus computes the next value
of a loop counter each time the loop is executed. If possible, you should create an integer or a sequence
object to hold the value of a loop counter. If you use a value derived from an Abaqus object, the time
taken to calculate the next value can slow your program significantly.

The following example uses the number of nodes in a part instance to determine the range of a loop
counter:

const odb_SequenceNode& nodeSequence = myInstance.nodes();
for (int i=0; i < nodeSequence.size() ; i++){

const odb_Node& myNode = nodeSequence[i];
nodeLabel = myNode.label();

}

You can make the programmore efficient if you create an object to hold the value of the number of nodes.

10–58

Abaqus ID:
Printed on:

IMPROVING THE EFFICIENCY OF YOUR SCRIPTS

const odb_SequenceNode& nodeSequence = myInstance.nodes();
int numNodes = nodeSequence.size();
for (int i=0; i < numNodes; i++){

const odb_Node& myNode = nodeSequence[i];
nodeLabel = myNode.label();

}

You can use this technique only if the maximum value of the loop counter remains fixed for the duration
of the loop.

10.14.2 Creating objects to hold temporary variables
To improve the efficiency of scripts that access an output database, you should create objects that will be
used to hold temporary variables that are accessed multiple times while the program is executing. For
example, if the program accesses the temporary variable while inside a loop that is executed many times,
creating an object to hold the variable will speed up your program significantly.

The following example examines the von Mises stress in each element during a particular frame
of field output. If the stress is greater than a certain maximum value, the program prints the strain
components for the element.

odb_FieldOutputRepository& fieldRep = frame1.fieldOutputs();
odb_FieldOutput& stressField = fieldRep.get("S");
odb_FieldOutput& strainField = fieldRep.get("LE");
const odb_SequenceFieldValue& seqStressVal =

stressField.values();
int numFV = seqStressVal.size();
int strainComp = 0;
for (int loc=0; loc < numFV; loc++) {

const odb_FieldValue stressVal = seqStressVal[loc];
if (stressVal.mises() > stressCap) {

cout << "Element label = " << stressVal.elementLabel()
<< endl;

cout << "Integration Point = "
<< stressVal.integrationPoint() << endl;

const odb_SequenceFieldValue& seqStrainVal =
strainField.values();

const odb_FieldValue strainVal = seqStrainVal[loc];
const float* const data = strainVal.data(strainComp);
cout << " LE : ";
for (int comp=0; comp < strainComp; comp++)

10–59

Abaqus ID:
Printed on:

IMPROVING THE EFFICIENCY OF YOUR SCRIPTS

cout << data[comp];
cout << endl;

}
}

In this example every time the script calls the strainField.values method, Abaqus must
reconstruct the sequence of FieldValue objects. This reconstruction could result in a significant
performance degradation, particularly for a large model.

A slight change in the program greatly improves its performance, as shown in the following
example:

odb_FieldOutputRepository& fieldRep =
frame1.fieldOutputs();

odb_FieldOutput& stressField = fieldRep.get("S");
odb_FieldOutput& strainField = fieldRep.get("LE");
const odb_SequenceFieldValue& seqStressVal =

stressField.values();
const odb_SequenceFieldValue& seqStrainVal =

strainField.values();
int numFV = seqStressVal.size();
int strainComp = 0;
for (int loc=0; loc < numFV; loc++) {

const odb_FieldValue stressVal = seqStressVal[loc];
if (stressVal.mises() > stressCap) {

cout << "Element label = " << stressVal.elementLabel()
<< endl;

cout << "Integration Point = "
<< stressVal.integrationPoint() << endl;

const odb_FieldValue strainVal = seqStrainVal[loc];
const float* data = strainVal.data(strainComp);
cout << " LE : ";
for (int comp = 0; comp < strainComp; comp++)

cout << data[comp];
cout << endl;

}
}
}

Similarly, if you expect to retrieve more than one frame from an output database, you should create
a temporary variable that holds the entire frame repository. You can then provide the logic to retrieve the

10–60

Abaqus ID:
Printed on:

IMPROVING THE EFFICIENCY OF YOUR SCRIPTS

desired frames from the repository and avoid recreating the repository each time. For example, executing
the following statements could be very slow:

int numFrames = step1.frames().size();
for (int n=0; n < numFrames; n++)

odb_Frame& frame = step1.frames()[n];

Creating a temporary variable to hold the frame repository provides the same functionality and speeds
up the process:

odb_SequenceFrame& frameRepository = step1.frames();
int numFrames = frameRepository.size();
for (int n=0; n < numFrames; n++)

odb_Frame& frame = frameRepository[n];

Such a potential loss of performance will not be a problem when accessing a load case frame. Accessing
a load case frame does not result in the creation of a frame repository and, thus, does not suffer from a
corresponding loss of performance.

10.14.3 Using references to objects
Many functions return a reference to an object rather than an object. Returning a reference is much more
efficient because it avoids unnecessary memory operations. To maintain the efficiency of references,
you should use the reference itself. You should not assign the reference to a new object, since assigning
the reference to a new object creates a copy of the object that is denoted by the reference and invokes
potentially expensive copy constructors. For example,

odb_Instance instance = odb.rootAssembly().instances()
["PART-1-1"];

const odb_SequenceNode nodeSequence = myInstance.nodes();

In the above case a copy of the nodeSequence object has to be created in memory.
Many of the methods in the Abaqus Scripting Interface that provide access to an output database

return a reference to an object rather than the object itself. It is muchmore efficient to modify the previous
example to specify the returned type to be a reference:

odb_Instance& instance = odb.rootAssembly().instances()
["PART-1-1"];

10–61

Abaqus ID:
Printed on:

EXAMPLE PROGRAMS THAT ACCESS DATA FROM AN OUTPUT DATABASE

const odb_SequenceNode& nodeSequence = myInstance.nodes();

In this case no new object is created and no copy constructors are called.

10.15 Example programs that access data from an output database

The following examples illustrate how you use the output database commands to access data from an
output database:

• “Finding the maximum value of von Mises stress,” Section 10.15.1
• “Creating an output database,” Section 10.15.2
• “Reading data from an output database,” Section 10.15.3
• “Decreasing the amount of data in an output database by retaining data at specific frames,”
Section 10.15.4

• “Stress range for multiple load cases,” Section 10.15.5
• “A C++ version of FELBOW,” Section 10.15.6

10.15.1 Finding the maximum value of von Mises stress
This example illustrates how you can iterate through an output database and search for the maximum
value of von Mises stress. The program opens the output database specified by the first argument on the
command line and iterates through the following:

• Each step.
• Each frame in each step.
• Each value of von Mises stress in each frame.

In addition, you can supply an optional assembly element set argument from the command line, in which
case the program searches only the element set for the maximum value of von Mises stress.

The following illustrates how you can run the example program from the system prompt. The
program will search the element set ALL ELEMENTS in the viewer tutorial output database for the
maximum value of von Mises stress:

abaqus odbMaxMises.exe -odb viewer_tutorial.odb
-elset “ ALL ELEMENTS”

Note: If a command line argument is a String that contains spaces, some systems will interpret the String
correctly only if it is enclosed in double quotation marks. For example, “ ALL ELEMENTS”.

You can also run the example with only the -help parameter for a summary of the usage.

10–62

Abaqus ID:
Printed on:

EXAMPLE PROGRAMS THAT ACCESS DATA FROM AN OUTPUT DATABASE

Use the following commands to retrieve the example program and the viewer tutorial output
database:

abaqus fetch job=odbMaxMises.C
abaqus fetch job=viewer_tutorial

/***
odbMaxMises.C
Code to determine the location and value of the maximum
von-mises stress in an output database.
Usage: abaqus odbMaxMises -odb odbName -elset(optional)

elsetName
Requirements:
1. -odb : Name of the output database.
2. -elset : Name of the assembly level element set.

Search will be done only for element belonging
to this set. If this parameter is not provided,
search will be performed over the entire model.

3. -help : Print usage
**/
#if (defined(HP) && (! defined(HKS_HPUXI)))
#include <iostream.h>
#else
#include <iostream>
using namespace std;
#endif

#include <odb_API.h>
#include <sys/stat.h>
/*

utility functions

*/
bool fileExists(const odb_String &string);
void rightTrim(odb_String &string,const char* char_set);
void printExecutionSummary();
/***/

int ABQmain(int argc, char **argv)
{

10–63

Abaqus ID:
Printed on:

EXAMPLE PROGRAMS THAT ACCESS DATA FROM AN OUTPUT DATABASE

odb_String odbPath;
bool ifOdbName = false;
odb_String elsetName;
bool ifElset = false;
odb_Set myElset;
odb_String region = "over the entire model";
char msg[256];
char *abaCmd = argv[0];

for (int arg = 0; arg<argc; arg++)
{

if (strncmp(argv[arg],"-o**",2) == 0)
{

arg++;
odbPath = argv[arg];
rightTrim(odbPath,".odb");
if (!fileExists(odbPath))

{
cerr << "**ERROR** output database " << odbPath.CStr()

<< " does not exist\n" << endl;
exit(1);

}
ifOdbName = true;

}
else if (strncmp(argv[arg],"-e**",2)== 0)

{
arg++;
elsetName = argv[arg];
ifElset = true;

}
else if (strncmp(argv[arg],"-h**",2)== 0)

{
printExecutionSummary();
exit(0);

}
}

if (!ifOdbName)
{

cerr << "**ERROR** output database name is not provided\n";
printExecutionSummary();
exit(1);

10–64

Abaqus ID:
Printed on:

EXAMPLE PROGRAMS THAT ACCESS DATA FROM AN OUTPUT DATABASE

}
// Open the output database
odb_Odb& myOdb = openOdb(odbPath);
odb_Assembly& myAssembly = myOdb.rootAssembly();
if (ifElset)

{
if (myAssembly.elementSets().isMember(elsetName))

{
myElset = myAssembly.elementSets()[elsetName];
region = " in the element set : " + elsetName;

}
else

{
cerr<<"An assembly level elset " << elsetName.CStr()

<< " does not exist in the output database :"
<< myOdb.name().CStr() << endl;

myOdb.close();
exit(0);

}
}

// Initialize maximum values.
float maxMises = -0.1;
int numFV = 0;
int maxElem = 0;
odb_String maxStep = "__None__";
int maxFrame = -1;
static const odb_String Stress = "S";
bool isStressPresent = false;
int numBD = 0,numElems = 0, numIP = 0, numComp = 0, position = 0;
// Iterate over all available steps
odb_StepRepository& sRep1 = myOdb.steps();
odb_StepRepositoryIT sIter1 (sRep1);
for (sIter1.first(); !sIter1.isDone(); sIter1.next())

{
odb_Step& step = sRep1[sIter1.currentKey()];
cout<<"Processing Step: "<<step.name().CStr()<<endl;
odb_SequenceFrame& frameSequence = step.frames();
int numFrames = frameSequence.size();
for (int f = 0; f<numFrames; f++)

{
odb_Frame& frame = frameSequence[f];

10–65

Abaqus ID:
Printed on:

EXAMPLE PROGRAMS THAT ACCESS DATA FROM AN OUTPUT DATABASE

odb_FieldOutputRepository& fieldRep = frame.fieldOutputs();
if (fieldRep.isMember(Stress))
{

isStressPresent = true;
odb_FieldOutput field = fieldRep.get(Stress);
if (ifElset)

field = field.getSubset(myElset);
const odb_SequenceFieldBulkData& seqVal =

field.bulkDataBlocks();
int numBlocks = seqVal.size();
for (int iblock=0; iblock<numBlocks; iblock++)

{
const odb_FieldBulkData& bulkData = seqVal[iblock];
numBD = bulkData.length();
numElems = bulkData.numberOfElements();
numIP = numBD/numElems;
numComp = bulkData.width();
float* mises = bulkData.mises();
int* elementLabels = bulkData.elementLabels();
int* integrationPoints = bulkData.integrationPoints();
for (int elem=0; elem<numElems; elem++)

{
for (int ip=0; ip<numIP; ip++)

{
position = elem*numIP+ip;
float misesData = mises[position];
if (misesData > maxMises)

{
maxMises = misesData;
maxElem = elementLabels[elem];
maxStep = step.name();
maxFrame = frame.incrementNumber();

}
}

}
}

}
}

}
if (isStressPresent)

10–66

Abaqus ID:
Printed on:

EXAMPLE PROGRAMS THAT ACCESS DATA FROM AN OUTPUT DATABASE

{
cout << "Maximum von Mises stress " << region.CStr()

<< " is " << maxMises << " in element "
<< maxElem << endl;

cout << "Location: frame # " << maxFrame << " step: "
<< maxStep.CStr() << endl;

}
else

{
cout << " Stress output is not available in the "

<< "output database : " << myOdb.name().CStr() << endl;
}

// close the output database before exiting the program
myOdb.close();
return(0);

}

bool fileExists(const odb_String &string)
{

bool exists = false;
struct stat buf;
if (stat(string.CStr(),&buf)==0)

exists = true;
return exists;

}

void rightTrim(odb_String &string,const char* char_set)
{

int length = string.Length();
if (string.Find(char_set)==length)

string.append(odb_String(char_set));
}

void printExecutionSummary()
{

cout << " Code to determine the location and value of the\n"
<< " maximum von-mises stress in an output database.\n"
<< " Usage: abaqus odbMaxMises -odb odbName \n"
<< " -elset(optional), -elsetName\n"
<< " Requirements:\n"
<< " 1. -odb : Name of the output database.\n"

10–67

Abaqus ID:
Printed on:

EXAMPLE PROGRAMS THAT ACCESS DATA FROM AN OUTPUT DATABASE

<< " 2. -elset : Name of the assembly level element set.\n"
<< " Search will be done only for element \n"
<< " belonging to this set.\n"
<< " If this parameter is not provided, search \n"
<< " will be performed over the entire model.\n"
<< " 3. -help : Print usage\n";

}

10.15.2 Creating an output database
The following example illustrates how you can use the Abaqus C++ API commands to do the following:

1. Create a new output database.

2. Add model data.

3. Add field data.

4. Add history data.

5. Read history data.

6. Save the output database.

Use the following command to retrieve the example program:

abaqus fetch job=odbWrite

//
// Code to create an output database and add model,
// field, and history data. The code also reads
// history data, performs an operation on the data, and writes
// the result back to the output database.
//
// SECTION: System includes
//
#include <math.h>
//
// Begin local includes
//
#include <odb_API.h>
#include <odb_MaterialTypes.h>
#include <odb_SectionTypes.h>
//
// End local includes
//

int ABQmain(int argc, char **argv)

10–68

Abaqus ID:
Printed on:

EXAMPLE PROGRAMS THAT ACCESS DATA FROM AN OUTPUT DATABASE

{
// Create an ODB (which also creates the rootAssembly).
int n;
odb_String name("simpleModel");
odb_String analysisTitle("ODB created with C++ ODB API");
odb_String description("example illustrating C++ ODB API");
odb_String path("odbWriteC.odb");
odb_Odb& odb = Odb(name,

analysisTitle,
description,
path);

// Model data:
// Set up the section categories.
odb_String sectionCategoryName("S5");
odb_String sectionCategoryDescription("Five-Layered Shell");
odb_SectionCategory& sCat =

odb.SectionCategory(sectionCategoryName,
sectionCategoryDescription);

int sectionPointNumber = 1;
odb_String sectionPointDescription("Bottom");
odb_SectionPoint spBot =

sCat.SectionPoint(sectionPointNumber,
sectionPointDescription);

sectionPointNumber = 3;
sectionPointDescription = "Middle";
odb_SectionPoint spMid =

sCat.SectionPoint(sectionPointNumber,
sectionPointDescription);

sectionPointNumber = 5;
sectionPointDescription = "Top";
odb_SectionPoint spTop =

sCat.SectionPoint(sectionPointNumber,
sectionPointDescription);

// Create few materials
odb_MaterialApi materialApi;
odb.extendApi(odb_Enum::odb_MATERIAL,materialApi);
odb_String materialName("Elastic Material");
odb_Material& material_1 =

materialApi.Material(materialName);
odb_SequenceSequenceDouble myTable;
odb_SequenceDouble myData;
myData.append(12000.00);//youngs modulus
myData.append(0.3);//poissons ratio
myTable.append(myData);
odb_String type("ISOTROPIC");
bool noCompression = false;
bool noTension = false;

10–69

Abaqus ID:
Printed on:

EXAMPLE PROGRAMS THAT ACCESS DATA FROM AN OUTPUT DATABASE

bool temperatureDependency = false;
int dependencies = 0;
odb_String moduli("LONG_TERM");
material_1.Elastic(myTable,

type,
noCompression,
noTension,
temperatureDependency,
dependencies,
moduli);

//create few sections
odb_SectionApi sectionApi;
odb.extendApi(odb_Enum::odb_SECTION,

sectionApi);
odb_String sectionName("Homogeneous Shell Section");
double thickness = 2.0;
odb_HomogeneousShellSection& section_1 =

sectionApi.HomogeneousShellSection(sectionName,thickness,materialName);

// Create a 2-element shell model,
//4 integration points, 5 section points.

odb_Part& part1 = odb.Part("part-1",
odb_Enum::THREE_D,

odb_Enum::DEFORMABLE_BODY);

odb_SequenceInt nodeLabels;
for(n=1; n<7; n++)

nodeLabels.append(n);

double c[6][3] = { {1, 0, 0.0},
{2, 0, 0.0},

{2, 1, 0.1},
{1, 1, 0.1},

{2, -1, -0.1},
{1, -1, -0.1} };

odb_SequenceSequenceFloat nodeCoor;
for(n=0; n<nodeLabels.size(); n++) {

odb_SequenceFloat loc;
for(int i=0; i<3; i++)

loc.append(c[n][i]);
nodeCoor.append(loc);

}
odb_String nodeSetName("nset-1");
part1.addNodes(nodeLabels,

nodeCoor,
nodeSetName);

10–70

Abaqus ID:
Printed on:

EXAMPLE PROGRAMS THAT ACCESS DATA FROM AN OUTPUT DATABASE

odb_SequenceInt elLabels;
elLabels.append(1);
elLabels.append(2);
odb_SequenceSequenceInt connect;
const int numNodePerEl = 4;
int conn[2][numNodePerEl] = { {1, 2, 3, 4},

{6, 5, 2, 1} };
for(int e=0; e<elLabels.size(); e++) {

odb_SequenceInt l;
for(int i=0; i<numNodePerEl; i++)

l.append(conn[e][i]);
connect.append(l);

}
odb_String elType("S4");
odb_String elsetName("eset-1");
part1.addElements(elLabels,

connect,
elType,
elsetName,
sCat);

// Instance the part.
odb_String partInstanceName("part-1-1");
odb_Instance& instance1 =

odb.rootAssembly().Instance(partInstanceName, part1);
// create instance level sets for section assignment
elsetName = "Material 1";
odb_Set& elset_1 = instance1.ElementSet(elsetName,

elLabels);
// section assignment on instance
instance1.assignSection(elset_1,section_1);
// Field data:
// Create a step and a frame.
odb_String stepName("step-1");
odb_String stepDescription("first analysis step");
odb_Step& step1 = odb.Step(stepName,

stepDescription,
odb_Enum::TIME,

1.0);
int incrementNumber = 1;
float analysisTime = 0.1;
odb_String frameDescription("results frame for time");
frameDescription.append(analysisTime);
odb_Frame frame1 = step1.Frame(incrementNumber,

analysisTime,
frameDescription);

// Write nodal displacements.
odb_String fieldName("U");

10–71

Abaqus ID:
Printed on:

EXAMPLE PROGRAMS THAT ACCESS DATA FROM AN OUTPUT DATABASE

odb_String fieldDescription("Displacements");
odb_FieldOutput& uField =

frame1.FieldOutput(fieldName,
fieldDescription,

odb_Enum::VECTOR);

odb_SequenceSequenceFloat dispData;
odb_SequenceFloat dispData1[6];
// create some displacement values
for(n=0; n<6; n++) {

for(int m=1; m<4; m++)
dispData1[n].append(n*3+m);

dispData.append(dispData1[n]);
}
uField.addData(odb_Enum::NODAL,

instance1,
nodeLabels,
dispData);

// Make this the default deformed field for visualization.

step1.setDefaultDeformedField(uField);

// Write stress tensors (output only available at
// top/bottom section points)
// The element defined above (S4) has 4 integration points.
// Hence, there are 4 stress tensors per element.
// Each Field constructor refers to only one layer of
// section points.

odb_SequenceSequenceFloat topData;
odb_SequenceFloat topData1;
for(n=1; n<5; n++)

topData1.append(n);

for(n=0; n<8; n++)
topData.append(topData1);

odb_SequenceSequenceFloat bottomData;
odb_SequenceFloat bottomData1;
for(n=1; n<5; n++)

bottomData1.append(n);

for(n=0; n<8; n++)
bottomData.append(bottomData1);

odb_SequenceSequenceFloat transform;

//transform = ((1.,0.,0.), (0.,1.,0.), (0.,0.,1.))

10–72

Abaqus ID:
Printed on:

EXAMPLE PROGRAMS THAT ACCESS DATA FROM AN OUTPUT DATABASE

for(n=1; n<4; n++){
odb_SequenceFloat transform1;
for(int m=1; m<4; m++) {

if(m==n)transform1.append(1);
else transform1.append(0);

}
transform.append(transform1);

}

odb_SequenceString componentLabels;
componentLabels.append("S11");
componentLabels.append("S22");
componentLabels.append("S33");
componentLabels.append("S12");

odb_SequenceInvariant validInvariants;
validInvariants.append(odb_Enum::MISES);
fieldName = "S";
fieldDescription = "Stress";
odb_FieldOutput& sField =

frame1.FieldOutput(fieldName,
fieldDescription,
odb_Enum::TENSOR_3D_PLANAR,
componentLabels,
validInvariants);

sField.addData(odb_Enum::INTEGRATION_POINT,
instance1,

elLabels,
topData,
spTop,
transform);

sField.addData(odb_Enum::INTEGRATION_POINT,
instance1,

elLabels,
bottomData,
spBot,
transform);

// For this step, make this the default
// field for visualization.

step1.setDefaultField(sField);

// History data:
// Create a HistoryRegion for a specific point.
odb_HistoryPoint hPoint1(instance1.getNodeFromLabel(1));

10–73

Abaqus ID:
Printed on:

EXAMPLE PROGRAMS THAT ACCESS DATA FROM AN OUTPUT DATABASE

odb_String historyRegionName("historyNode0");
odb_String historyRegionDescription(

"Displacement and reaction force");
odb_HistoryRegion& hRegionStep1 =

step1.HistoryRegion(historyRegionName,
historyRegionDescription,
hPoint1);

// Create variables for this history output in step1.

odb_String historyOutputName("U1");
odb_String historyOutputDescription("Displacement");
odb_HistoryOutput& hOutputStep1U1 =

hRegionStep1.HistoryOutput(historyOutputName,
historyOutputDescription,
odb_Enum::SCALAR);

historyOutputName = "RF1";
historyOutputDescription = "Reaction Force";
odb_HistoryOutput& hOutputStep1Rf1 =

hRegionStep1.HistoryOutput(historyOutputName,
historyOutputDescription,
odb_Enum::SCALAR);

// Add history data for step1.

hOutputStep1U1.addData(0.0, 0.0);
hOutputStep1Rf1.addData(0.0,0.0);
hOutputStep1U1.addData(0.1, 0.1);
hOutputStep1Rf1.addData(0.1,0.1);
hOutputStep1U1.addData(0.3, 0.3);
hOutputStep1Rf1.addData(0.3,0.3);
hOutputStep1U1.addData(1.0, 0.5);
hOutputStep1Rf1.addData(1.0,0.5);

// Create another step for history data.
stepName = "step-2";
stepDescription = "second analysis step";
odb_Step& step2 = odb.Step(stepName,

stepDescription,
odb_Enum::TIME,

1.0);

// Create new history region

odb_HistoryPoint hPoint2(instance1.getNodeFromLabel(1));

odb_HistoryRegion& hRegionStep2 =
step2.HistoryRegion(historyRegionName,

historyRegionDescription,

10–74

Abaqus ID:
Printed on:

EXAMPLE PROGRAMS THAT ACCESS DATA FROM AN OUTPUT DATABASE

hPoint2);

//Create new history output
historyOutputName = "U1";
historyOutputDescription = "Displacement";
odb_HistoryOutput& hOutputStep2U1 =

hRegionStep2.HistoryOutput(historyOutputName,
historyOutputDescription,
odb_Enum::SCALAR);

historyOutputName = "RF1";
historyOutputDescription = "Reaction Force";
odb_HistoryOutput& hOutputStep2Rf1 =

hRegionStep2.HistoryOutput(historyOutputName,
historyOutputDescription,
odb_Enum::SCALAR);

// Add history data for the second step.

hOutputStep2U1.addData(1.2, 0.8);
hOutputStep2Rf1.addData(1.2,0.9);
hOutputStep2U1.addData(1.9, 0.9);
hOutputStep2Rf1.addData(1.9,1.1);
hOutputStep2U1.addData(3.0, 1.3);
hOutputStep2Rf1.addData(3.0,1.3);
hOutputStep2U1.addData(4.0, 1.5);
hOutputStep2Rf1.addData(4.0,1.5);

// Square the history data U, and store as new history output
historyOutputName = "squareU1";
historyOutputDescription = "Square of displacements";
odb_HistoryOutput& hOutputStep1sumU1 =

hRegionStep1.HistoryOutput(historyOutputName,
historyOutputDescription,
odb_Enum::SCALAR);

historyOutputName = "squareU2";
odb_HistoryOutput& hOutputStep2sumU1 =

hRegionStep2.HistoryOutput(historyOutputName,
historyOutputDescription,
odb_Enum::SCALAR);

// Get XY Data from the two steps.

odb_HistoryOutputRepository& historyOutputs1 =
hRegionStep1.historyOutputs();

historyOutputName = "U1";
odb_HistoryOutput& u1FromStep1 =

historyOutputs1[historyOutputName];

10–75

Abaqus ID:
Printed on:

EXAMPLE PROGRAMS THAT ACCESS DATA FROM AN OUTPUT DATABASE

odb_HistoryOutputRepository& historyOutputs2 =
hRegionStep2.historyOutputs();

odb_HistoryOutput& u1FromStep2 =
historyOutputs2[historyOutputName];

odb_SequenceSequenceFloat hdata1 = u1FromStep1.data();
odb_SequenceSequenceFloat hdata2 = u1FromStep2.data();

// Add the squared displacement to the two steps.

for(n=0; n<hdata1.size(); n++){
odb_SequenceFloat hdata11=hdata1.get(n);
hOutputStep1sumU1.addData(hdata11.get(0),

pow((double)hdata11.get(1),(int)2));
}

for(n=0; n<hdata2.size(); n++){
odb_SequenceFloat hdata22=hdata2.get(n);
hOutputStep2sumU1.addData(hdata22.get(0),

pow((double)hdata22.get(1),(int)2));
}

// Save the results in the output database.
// Use the Visualization module of Abaqus/CAE to
// view the contents of the output database.

odb.save();
odb.close();
return 0;

}

10.15.3 Reading data from an output database

This example illustrates how you can print the content of an output database. The example opens the
output database specified on the command line and calls functions that print the following:

• Parts
• Part instances
• The root assembly
• Connectors
• Connector properties

10–76

Abaqus ID:
Printed on:

EXAMPLE PROGRAMS THAT ACCESS DATA FROM AN OUTPUT DATABASE

• Datum coordinate systems
• Nodes
• Elements
• Sets
• Faces
• Sections
• Steps
• Frames
• Fields
• Field values
• Field bulk data
• Field locations
• History regions
• History output
• History points
Use the following command to retrieve the example program:

abaqus fetch job=odbDump

10.15.4 Decreasing the amount of data in an output database by retaining
data at specific frames

This example illustrates how you can decrease the size of an output database. In most cases a large
output database results from excessive field output being generated over a large number of frames. The
Abaqus C++ API does not support the deletion of data from an output database; however, you can use this
example program to copy data from select frames into a second output database created by a datacheck
analysis that has identical model data. The original analysis and the datacheck analysis must be run
using the same number of processors because the internal organization of data may differ based on the
number of processors. The program uses addData to copy data at specified frames from the large output
database into the new output database. The addData method works only when the model data in the
two output databases are identical. For more information, see “addData,” Section 61.7.6 of the Abaqus
Scripting Reference Guide.

When you run the program, the following command line parameters are required:

-smallOdb odbName

The name of the output database created with a datacheck analysis of the original problem.
For more information, see “Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD execution,”
Section 3.2.2 of the Abaqus Analysis User’s Guide.

10–77

Abaqus ID:
Printed on:

EXAMPLE PROGRAMS THAT ACCESS DATA FROM AN OUTPUT DATABASE

-largeOdb odbName

The name of the large output database generated by the original problem. The program copies
selected frames from this output database.

The following parameters are optional:

-history

Copy all history output from all available steps in the large output database. By default, history
output is not copied.

WARNING: Copying large amounts of history data can result in the program creating a very large
output database.

-debug

Print a detailed report of all the operations performed during the running of the program. By default,
no debug information is generated.

WARNING: If you are extracting data from a large output database, the debug option can generate
large amounts of information.

You can also run the example with only the -help parameter for a summary of the usage.
The following is an example of how you can use this program in conjunction with the output

database generated by the problem described in “Free ring under initial velocity: comparison of rate-
independent and rate-dependent plasticity,” Section 1.3.4 of the Abaqus Benchmarks Guide. Use the
following commands to retrieve the example program and the benchmark input file:

abaqus fetch job=odbFilter.C
abaqus fetch job=ringshell.inp

1. Run an analysis using the benchmark input file:

abaqus job=ringshell

This creates an output database called ringshell.odb that contains 100 frames of data.

2. Run a datacheck analysis to obtain a new output database called ringshell_datacheck.odb
that contains the same model data as ringshell.odb:

abaqus job=ringshell_datacheck -input ringshell datacheck

3. Create the executable program:

abaqus make job=odbFilter.C

The program displays the number of frames available in each step. For each step you must specify
the number of increments between frames, which is the frequency at which the data will be copied to the
new output database. Data for the first and last increment in each step are always copied. For example,

10–78

Abaqus ID:
Printed on:

EXAMPLE PROGRAMS THAT ACCESS DATA FROM AN OUTPUT DATABASE

if a step has 100 frames, and you enter a frame interval of 37, the program will copy data for frames 0,
37, 74, and 100.

The following statement will run the executable program and read data from the small output
database containing only model data and the large output database created by the benchmark example:

abaqus odbFilter -smallOdb ringshell_datacheck -largeOdb ringshell

The program prompts you for the increment between frames:

Results from ODB : ringshell.odb will be filtered & written
to ODB: ringshell_datacheck
By default only the first & last increment of a step will
be saved
For each step enter the increment between frames
for example : 3 => frames 0,3,6,..,lastframe will be saved
STEP Step-1 has 101 Frames
Enter Increment between frames

Enter 37 to define the increment between frames. The program then reads the data and displays the
frames being processed:

Processing frame # : 0
Processing frame # : 37
Processing frame # : 74
Processing frame # : 100
Filtering successfully completed

10.15.5 Stress range for multiple load cases
This example illustrates how you can use the envelope operations to compute the stress range over a
number of load cases. The example program does the following:

• For each load case during a specified step, the program collects the S11 components of the stress
tensor fields into a list of scalar fields.

• Computes the maximum andminimum of the S11 stress component using the envelope calculations.
• Computes the stress range using the maximum and minimum values of the stress component.
• Creates a new frame in the step.
• Writes the computed stress range into a new FieldOutput object in the new frame.
Use the following command to retrieve the example program:

abaqus fetch job=stressRange

The fetch command also retrieves an input file that you can use to generate an output database that can
be read by the example program.

10–79

Abaqus ID:
Printed on:

EXAMPLE PROGRAMS THAT ACCESS DATA FROM AN OUTPUT DATABASE

//
// Code to compute a stress range from
// all the load cases in a step.
//
// The stress range is saved to a frame with the
// description "Stress Range"

// System includes
#if (defined(HP) && (! defined(HKS_HPUXI)))
#include <iostream.h>
#else
#include <iostream>
using namespace std;
#endif

// Begin Local Includes
#include <odb_API.h>
// End Local Includes

odb_FieldOutput computeStressRange(odb_Step& step);

int ABQmain(int argc, char **argv)
{

if(argc < 3) {
cerr << "Usage: abaqus stressRange.x odb_name"

<< "step_name"
<< endl;

return 1;
}

odb_String odbName(argv[1]);
odb_String stepName(argv[2]);
cout << "Computing for odb \"" << odbName.CStr() << "\"";
cout << " and step \"" << stepName.CStr() << "\"." << endl;

// compute stress range and save to odb
odb_Odb& odb = openOdb(odbName);
odb_Step& step = odb.steps()[stepName];
odb_FieldOutput range = computeStressRange(step);

10–80

Abaqus ID:
Printed on:

EXAMPLE PROGRAMS THAT ACCESS DATA FROM AN OUTPUT DATABASE

// Save the results in the output database.
odb_Frame rangeFrame = step.Frame(0, 0, "Stress Range");
rangeFrame.FieldOutput(range, "S11 Range");
odb.save();
odb.close();

return 0;
}

odb_FieldOutput
computeStressRange(odb_Step& step)
{

// collect stress fields for all load cases
odb_SequenceFieldOutput sFields;
odb_LoadCaseRepositoryIT iter(step.loadCases());
for(iter.first(); !iter.isDone(); iter.next()) {

odb_Frame frame = step.getFrame(iter.currentValue());
odb_FieldOutput& stressField = frame.fieldOutputs()["S"];
sFields.append(stressField.getScalarField("S11"));

};

// compute maximum and minimum envelopes
odb_SequenceFieldOutput maxFields = maxEnvelope(sFields);
odb_SequenceFieldOutput minFields = minEnvelope(sFields);

// compute and return range
return (maxFields.get(0) - minFields.get(0));

}

10.15.6 A C++ version of FELBOW

This example illustrates the use of a C++ program to read selected element integration point records from
an output database and to postprocess the elbow element results. The program creates X–Y data that can
be plotted with the X–Y plotting capability in Abaqus/CAE. The program performs the same function as
the Fortran program described in “Creation of a data file to facilitate the postprocessing of elbow element
results: FELBOW,” Section 15.1.6 of the Abaqus Example Problems Guide.

The program reads integration point data for elbow elements from an output database to visualize
one of the following:

10–81

Abaqus ID:
Printed on:

EXAMPLE PROGRAMS THAT ACCESS DATA FROM AN OUTPUT DATABASE

1. Variation of an output variable around the circumference of a given elbow element, or

2. Ovalization of a given elbow element.

The program creates either an ASCII file containing X–Y data or a new output database file that can be
viewed using Abaqus/CAE.

To use option 2, you must ensure that the integration point coordinates (COORD) are written to
the output database. For option 1 the X-data are data for the distance around the circumference of the
elbow element, measured along the middle surface, and the Y-data are data for the output variable. For
option 2 the X–Y data are the current coordinates of the middle-surface integration points around the
circumference of the elbow element, projected to a local coordinate system in the plane of the deformed
cross-section. The origin of the local system coincides with the center of the cross-section; the plane of
the deformed cross-section is defined as the plane that contains the center of the cross-section.

You should specify the name of the output database during program execution. The program
prompts for additional information, depending on the option that was chosen; this information includes
the following:

• Your choice for storing results (ASCII file or a new output database)
• File name based on the above choice
• The postprocessing option (1 or 2)
• The part name
• The step name
• The frame number
• The element output variable (option 1 only)
• The component of the variable (option 1 only)
• The section point number (option 1 only)
• The element number or element set name
Before program execution, compile and link the C++ program using the abaqus make utility:

abaqus make job=felbow.C

After successful compilation, the program’s object code is linked automatically with the Abaqus object
codes stored in the shared program library and interface library to build the executable program. Refer
to Chapter 4, “Customizing the Abaqus environment,” of the Abaqus Installation and Licensing Guide
to see which compile and link commands are used for a particular computer.

Before executing the program, run an analysis that creates an output database file containing the
appropriate output. This analysis includes, for example, output for the elements and the integration point
coordinates of the elements. Execute the program using the following command:

abaqus felbow <filename.odb>

The program prompts for other information, such as the desired postprocessing option, part name, etc.
The program processes the data and produces a text file or a new output database file that contains the
information required to visualize the elbow element results.

10–82

Abaqus ID:
Printed on:

EXAMPLE PROGRAMS THAT ACCESS DATA FROM AN OUTPUT DATABASE

“Elastic-plastic collapse of a thin-walled elbow under in-plane bending and internal pressure,”
Section 1.1.2 of the Abaqus Example Problems Guide, contains several figures that can be created with
the aid of this program.

10–83

Abaqus ID:
Printed on:

About SIMULIA
Dassault Systèmes SIMULIA applications, including Abaqus, Isight, Tosca, and Simulation
Lifecycle Management, enable users to leverage physics-based simulation and high-performance
computing to explore real-world behavior of products, nature, and life. As an integral part
of Dassault Systèmes’ 3DEXPERIENCE platform, SIMULIA applications accelerate the
process of making highly informed, mission-critical design and engineering decisions before
committing to costly and time-consuming physical prototypes. www.3ds.com/simulia

Europe/Middle East/Africa
Dassault Systèmes
10, rue Marcel Dassault
CS 40501
78946 Vélizy-Villacoublay Cedex
France

Americas
Dassault Systèmes
175 Wyman Street
Waltham, Massachusetts
02451-1223
USA

Asia-Pacific
Dassault Systèmes K.K.
ThinkPark Tower
2-1-1 Osaki, Shinagawa-ku,
Tokyo 141-6020
Japan

Our 3DEXPERIENCE Platform powers our brand
applications, serving 12 industries, and provides a rich
portfolio of industry solution experiences.
Dassault Systèmes, the 3DEXPERIENCE Company, provides business and people
with virtual universes to imagine sustainable innovations. Its world-leading solutions
transform the way products are designed, produced, and supported. Dassault Systèmes’
collaborative solutions foster social innovation, expanding possibilities for the virtual world
to improve the real world. The group brings value to over 170,000 customers of all sizes
in all industries in more than 140 countries. For more information, visit www.3ds.com.

©
20

15
 D

as
sa

ul
t S

ys
tè

m
es

. A
ll

ri
gh

ts
 re

se
rv

ed
. 3

D
EX

P
ER

IE
N
CE

, t
he

 C
om

pa
ss

 ic
on

 a
nd

 th
e

3D
S

lo
go

, C
A

TI
A

, S
O

LI
D

W
O

R
KS

, E
N

O
VI

A
, D

EL
M

IA
, S

IM
U

LI
A

, G
EO

VI
A

, E
XA

LE
A

D
, 3

D
 V

IA
, B

IO
VI

A
, N

ET
VI

B
ES

, a
nd

 3
D

XC
IT

E
ar

e
co

m
m

er
ci

al
 tr

ad
em

ar
ks

or

 re
gi

st
er

ed
 tr

ad
em

ar
ks

 o
f D

as
sa

ul
t S

ys
tè

m
es

 o
r i

ts
 s

ub
si

di
ar

ie
s

in
 th

e
U

.S
. a

nd
/o

r o
th

er
 c

ou
nt

ri
es

. A
ll

ot
he

r t
ra

de
m

ar
ks

 a
re

 o
w

ne
d

by
 th

ei
r r

es
pe

ct
iv

e
ow

ne
rs

. U
se

 o
f a

ny
 D

as
sa

ul
t S

ys
tè

m
es

 o
r i

ts
 s

ub
si

di
ar

ie
s

tr
ad

em
ar

ks
 is

 s
ub

je
ct

 to
 th

ei
r e

xp
re

ss
 w

ri
tt

en
 a

pp
ro

va
l.

	Abaqus 2016 PDF Documentation
	Abaqus Scripting User's Guide
	Legal Notices
	Preface
	Contents

	Part I: An introduction to the Abaqus Scripting Interface
	1. An overview of the Abaqus Scripting User's Guide
	2. Introduction to the Abaqus Scripting Interface
	2.1 Abaqus/CAE and the Abaqus Scripting Interface
	2.2 How does the Abaqus Scripting Interface interact with Abaqus/CAE ?

	3. Simple examples
	3.1 Creating a part
	3.1.1 The example script
	3.1.2 How does the script work?

	3.2 Reading from an output database
	3.2.1 The example script
	3.2.2 How does the script work?

	3.3 Summary

	Part II: Using the Abaqus Scripting Interface
	4. Introduction to Python
	4.1 Python and Abaqus
	4.2 Python resources
	4.3 Using the Python interpreter
	4.4 Object-oriented basics
	4.5 The basics of Python
	4.5.1 Variable names and assignment
	4.5.2 Python data types
	4.5.3 Determining the type of a variable
	4.5.4 Sequences
	4.5.5 Sequence operations
	4.5.6 Python None
	4.5.7 Continuation lines and comments
	4.5.8 Printing variables using formatted output
	4.5.9 Control blocks

	4.6 Programming techniques
	4.6.1 Creating functions
	4.6.2 Using dictionaries
	4.6.3 Reading and writing from files
	4.6.4 Error handling
	4.6.5 Functions and modules
	4.6.6 Writing your own modules

	4.7 Further reading

	5. Using Python and the Abaqus Scripting Interface
	5.1 Executing scripts
	5.2 Abaqus Scripting Interface documentation style
	5.2.1 How the commands are ordered
	5.2.2 Access
	5.2.3 Path
	5.2.4 Arguments
	5.2.5 Return value

	5.3 Abaqus Scripting Interface data types
	5.3.1 SymbolicConstants
	5.3.2 Booleans
	5.3.3 Repositories

	5.4 Object-oriented programming and the Abaqus Scripting Interface
	5.4.1 The Abaqus Scripting Interface and methods
	5.4.2 The Abaqus Scripting Interface and members
	5.4.3 Object-oriented programming and the Abaqus Scripting Interface —a summary

	5.5 Error handling in the Abaqus Scripting Interface
	5.5.1 Standard Python exceptions
	5.5.2 Standard Abaqus Scripting Interface exceptions
	5.5.3 Additional Abaqus Scripting Interface exceptions
	5.5.4 Exception handling

	5.6 Extending the Abaqus Scripting Interface
	5.6.1 Storing custom data in the model database or in other objects
	5.6.2 Interaction with the GUI
	5.6.3 CommandRegister class
	5.6.4 Repositories
	5.6.5 Repository methods
	5.6.6 RepositorySupport
	5.6.7 Registered dictionaries
	5.6.8 Registered lists
	5.6.9 Registered tuples
	5.6.10 Session data
	5.6.11 Saving application data in a model database
	5.6.12 Checking a model database when it is opened

	6. Using the Abaqus Scripting Interface with Abaqus/CAE
	6.1 The Abaqus object model
	6.1.1 An overview of the Abaqus object model
	6.1.2 Using tab completion to explore the object model
	6.1.3 The Model object model
	6.1.4 Using the object model
	6.1.5 Abstract base type
	6.1.6 Importing modules to extend the object model

	6.2 Copying, deleting, and renaming Abaqus Scripting Interface objects
	6.2.1 Creating a copy of an object
	6.2.2 More on copying objects
	6.2.3 Deleting objects
	6.2.4 Renaming objects

	6.3 Abaqus/CAE sequences
	6.4 Namespace
	6.5 Specifying what is displayed in the viewport
	6.6 Specifying a region
	6.7 Prompting the user for input
	6.7.1 Requesting a single input from the user
	6.7.2 Requesting multiple inputs from the user
	6.7.3 Requesting a warning reply from the user

	6.8 Interacting with Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD
	6.8.1 Processing messages from Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD
	6.8.2 Waiting for a job to complete
	6.8.3 An example of a callback function

	6.9 Using Abaqus Scripting Interface commands in your environment file

	Part III: The Abaqus Python development environment
	7. Using the Abaqus Python development environment
	7.1 An overview of the Abaqus Python development environment
	7.2 Abaqus PDE basics
	7.2.1 Starting the Abaqus Python development environment
	7.2.2 Managing files in the Abaqus PDE
	7.2.3 Editing files in the Abaqus PDE
	7.2.4 Selecting the settings for use with a file
	7.2.5 The message area and GUI command line interface

	7.3 Using the Abaqus PDE
	7.3.1 Creating .guiLog files
	7.3.2 Running a script
	7.3.3 Using the debugger
	7.3.4 Using breakpoints
	7.3.5 Using the Abaqus PDE with plug-ins
	7.3.6 Using the Abaqus PDE with custom applications

	Part IV: Putting it all together: examples
	8. Abaqus Scripting Interface examples
	8.1 Reproducing the cantilever beam tutorial
	8.1.1 Running the example
	8.1.2 The cantilever beam example script

	8.2 Generating a customized plot
	8.2.1 Opening the tutorial output database
	8.2.2 Opening an output database and displaying a contour plot
	8.2.3 Printing a contour plot at the end of each step

	8.3 Investigating the skew sensitivity of shell elements
	8.3.1 Creating the model to analyze
	8.3.2 Changing the skew angle
	8.3.3 Using a script to perform a parametric study

	8.4 Editing display preferences and GUI settings

	Part V: Accessing an output database
	9. Using the Abaqus Scripting Interface to access an output database
	9.1 What do you need to access the output database?
	9.2 How the object model for the output database relates to commands
	9.3 Object model for the output database
	9.3.1 Model data
	9.3.2 Results data

	9.4 Executing a script that accesses an output database
	9.5 Reading from an output database
	9.5.1 The Abaqus/CAE Visualization module tutorial output database
	9.5.2 Making the Odb commands available
	9.5.3 Opening an output database
	9.5.4 Reading model data
	9.5.5 Reading results data
	9.5.6 Reading field output data
	9.5.7 Using regions to read a subset of field output data
	9.5.8 Reading history output data
	9.5.9 An example of reading node and element information from an output database
	9.5.10 An example of reading field data from an output database

	9.6 Writing to an output database
	9.6.1 Creating a new output database
	9.6.2 Writing model data
	9.6.3 Writing results data
	9.6.4 Writing field output data
	9.6.5 Default display properties
	9.6.6 Writing history output data

	9.7 Exception handling in an output database
	9.8 Computations with Abaqus results
	9.8.1 Rules for the mathematical operations
	9.8.2 Valid mathematical operations
	9.8.3 Envelope calculations
	9.8.4 Transformation of results

	9.9 Improving the efficiency of your scripts
	9.9.1 Creating objects to hold temporary variables

	9.10 Example scripts that access data from an output database
	9.10.1 Finding the maximum value of von Mises stress
	9.10.2 Creating an output database
	9.10.3 An Abaqus Scripting Interface version of FPERT
	9.10.4 Computations with FieldOutput objects
	9.10.5 Computations with FieldValue objects
	9.10.6 Computations with HistoryOutput objects
	9.10.7 Creating a new load combination from different load cases
	9.10.8 Stress range for multiple load cases
	9.10.9 Transformation of field results
	9.10.10 Viewing the analysis of a meshed beam cross-section
	9.10.11 Using infinite elements to compute and view the results of an acoustic far-field analysis
	9.10.12 An Abaqus Scripting Interface version of FELBOW

	10. Using C++ to access an output database
	10.1 Overview
	10.2 What do you need to access the output database?
	10.3 Abaqus Scripting Interface documentation style
	10.3.1 How the commands are ordered
	10.3.2 Access
	10.3.3 Path
	10.3.4 Prototype
	10.3.5 Return value

	10.4 How the object model for the output database relates to commands
	10.5 Object model for the output database
	10.5.1 Model data
	10.5.2 Results data

	10.6 Compiling and linking your C++ source code
	10.7 Accessing the C++ interface from an existing application
	10.7.1 Initializing the C++ interface
	10.7.2 Link library location
	10.7.3 Runtime library location
	10.7.4 Header file location

	10.8 The Abaqus C++ API architecture
	10.8.1 Class naming convention
	10.8.2 Constructors
	10.8.3 Header files

	10.9 Utility interface
	10.9.1 Utility interface classes
	10.9.2 Utility interface examples

	10.10 Reading from an output database
	10.10.1 The Abaqus/CAE Visualization module tutorial output database
	10.10.2 Making the Odb commands available
	10.10.3 Opening an output database
	10.10.4 Reading model data
	10.10.5 Reading results data
	10.10.6 Reading field output data
	10.10.7 Using bulk data access to an output database
	10.10.8 Using regions to read a subset of field output data
	10.10.9 Reading history output data
	10.10.10 An example of reading field data from an output database

	10.11 Writing to an output database
	10.11.1 Creating a new output database
	10.11.2 Writing model data
	10.11.3 Writing results data
	10.11.4 Writing field output data
	10.11.5 Default display properties
	10.11.6 Writing history output data

	10.12 Exception handling in an output database
	10.13 Computations with Abaqus results
	10.13.1 Rules for the mathematical operations
	10.13.2 Valid mathematical operations
	10.13.3 Envelope calculations
	10.13.4 Transformation of results

	10.14 Improving the efficiency of your scripts
	10.14.1 Creating objects to hold loop counters
	10.14.2 Creating objects to hold temporary variables
	10.14.3 Using references to objects

	10.15 Example programs that access data from an output database
	10.15.1 Finding the maximum value of von Mises stress
	10.15.2 Creating an output database
	10.15.3 Reading data from an output database
	10.15.4 Decreasing the amount of data in an output database by retaining data at specific frames
	10.15.5 Stress range for multiple load cases
	10.15.6 A C++ version of FELBOW

	actionField8:
	actionField9:
	actionField10:
	actionField11:
	actionField12:
	actionField13:
	actionField14:
	actionField15:
	actionField16:
	actionField17:
	actionField18:
	actionField19:
	actionField20:
	actionField21:
	actionField22:
	actionField23:
	actionField24:
	actionField28:
	actionField29:
	actionField30:
	actionField31:
	actionField32:
	actionField33:
	actionField34:
	actionField35:
	actionField36:
	actionField37:
	actionField38:
	actionField39:
	actionField40:
	actionField41:
	actionField42:
	actionField43:
	actionField44:
	actionField45:
	actionField46:
	actionField47:
	actionField48:
	actionField49:
	actionField50:
	actionField51:
	actionField52:
	actionField53:
	actionField54:
	actionField55:
	actionField56:
	actionField58:
	actionField59:
	actionField60:
	actionField61:
	actionField62:
	actionField63:
	actionField64:
	actionField65:
	actionField66:
	actionField67:
	actionField68:
	actionField69:
	actionField70:
	actionField71:
	actionField72:
	actionField73:
	actionField74:
	actionField75:
	actionField76:
	actionField77:
	actionField78:
	actionField79:
	actionField80:
	actionField81:
	actionField82:
	actionField84:
	actionField85:
	actionField86:
	actionField87:
	actionField88:
	actionField89:
	actionField90:
	actionField91:
	actionField92:
	actionField93:
	actionField94:
	actionField95:
	actionField96:
	actionField97:
	actionField98:
	actionField99:
	actionField100:
	actionField101:
	actionField102:
	actionField103:
	actionField104:
	actionField105:
	actionField106:
	actionField107:
	actionField108:
	actionField109:
	actionField110:
	actionField111:
	actionField112:
	actionField113:
	actionField114:
	actionField115:
	actionField116:
	actionField117:
	actionField118:
	actionField122:
	actionField123:
	actionField124:
	actionField125:
	actionField126:
	actionField127:
	actionField128:
	actionField129:
	actionField130:
	actionField131:
	actionField132:
	actionField133:
	actionField134:
	actionField135:
	actionField136:
	actionField140:
	actionField141:
	actionField142:
	actionField143:
	actionField144:
	actionField145:
	actionField146:
	actionField147:
	actionField148:
	actionField149:
	actionField150:
	actionField151:
	actionField152:
	actionField153:
	actionField154:
	actionField155:
	actionField156:
	actionField157:
	actionField158:
	actionField159:
	actionField160:
	actionField161:
	actionField162:
	actionField166:
	actionField167:
	actionField168:
	actionField169:
	actionField170:
	actionField171:
	actionField172:
	actionField173:
	actionField174:
	actionField175:
	actionField176:
	actionField177:
	actionField178:
	actionField179:
	actionField180:
	actionField181:
	actionField182:
	actionField183:
	actionField184:
	actionField185:
	actionField186:
	actionField187:
	actionField188:
	actionField189:
	actionField190:
	actionField191:
	actionField192:
	actionField193:
	actionField194:
	actionField195:
	actionField196:
	actionField197:
	actionField198:
	actionField199:
	actionField200:
	actionField201:
	actionField202:
	actionField203:
	actionField204:
	actionField205:
	actionField206:
	actionField207:
	actionField208:
	actionField209:
	actionField210:
	actionField211:
	actionField212:
	actionField213:
	actionField214:
	actionField215:
	actionField216:
	actionField217:
	actionField218:
	actionField219:
	actionField220:
	actionField221:
	actionField222:
	actionField223:
	actionField224:
	actionField225:
	actionField226:
	actionField227:
	actionField228:
	actionField229:
	actionField230:
	actionField231:
	actionField232:
	actionField233:
	actionField234:
	actionField235:
	actionField236:
	actionField237:
	actionField238:
	actionField239:
	actionField240:
	actionField241:
	actionField242:
	actionField243:
	actionField244:
	actionField245:
	actionField246:
	actionField247:
	actionField248:
	actionField249:
	actionField250:
	actionField251:
	actionField252:
	actionField253:
	actionField254:
	actionField255:
	actionField256:
	actionField257:
	actionField258:
	actionField259:
	actionField260:
	actionField261:
	actionField262:
	actionField263:
	actionField264:
	actionField265:
	actionField266:
	actionField267:
	actionField268:
	actionField269:
	actionField270:
	actionField271:
	actionField272:
	actionField273:
	actionField274:
	actionField275:
	actionField276:
	actionField277:
	actionField278:
	actionField279:
	actionField280:
	actionField281:
	actionField282:
	actionField283:
	actionField284:
	actionField285:
	actionField286:
	actionField287:
	actionField288:
	actionField289:
	actionField290:
	actionField291:
	actionField292:
	actionField293:
	actionField294:
	actionField295:
	actionField296:
	actionField297:
	actionField298:
	actionField299:
	actionField300:
	actionField301:
	actionField302:
	actionField303:
	actionField304:
	actionField305:
	actionField306:
	actionField307:
	actionField308:
	actionField309:
	actionField310:
	actionField311:
	actionField312:
	actionField313:
	actionField314:
	actionField315:
	actionField316:
	actionField317:
	actionField318:
	actionField319:
	actionField320:

