
Abaqus GUI Toolkit User’s Guide

Abaqus ID:
Printed on:

GUI TOOLKIT USER’S GUIDE
ABAQUS 2016

Abaqus GUI Toolkit User’s Guide

Abaqus ID:
Printed on:

Legal Notices
Abaqus, the 3DS logo, and SIMULIA are commercial trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the United States
and/or other countries. Use of any Dassault Systèmes or its subsidiaries trademarks is subject to their express written approval.

Abaqus and this documentation may be used or reproduced only in accordance with the terms of the software license agreement signed by the customer, or,
absent such an agreement, the then current software license agreement to which the documentation relates.

This documentation and the software described in this documentation are subject to change without prior notice.

Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation.

© Dassault Systèmes, 2015

Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning
trademarks, copyrights, and licenses, see the Legal Notices in the Abaqus 2016 Installation and Licensing Guide.

Abaqus ID:
Printed on:

Preface

This section lists various resources that are available for help with using Abaqus Unified FEA software.

Support

Both technical software support (for problems with creating a model or performing an analysis) and systems
support (for installation, licensing, and hardware-related problems) for Abaqus are offered through a global
network of support offices, as well as through our online support system. Contact information for our
regional offices is accessible from SIMULIA→Locations at www.3ds.com/simulia. The online support
system is accessible by selecting the SUBMIT A REQUEST link at Support - Dassault Systèmes
(http://www.3ds.com/support).

Online support

Dassault Systèmes provides a knowledge base of questions and answers, solutions to questions that we have
answered, and guidelines on how to use Abaqus, Engineering Process Composer, Isight, Tosca, fe-safe, and
other SIMULIA products. The knowledge base is available by using the Search our Knowledge option on
www.3ds.com/support (http://www.3ds.com/support).

By using the online support system, you can also submit new requests for support. All support/service
requests are tracked. If you contact us by means outside the system to discuss an existing support problem
and you know the support request number, please mention it so that we can query the support system to see
what the latest action has been.

Training

All SIMULIA regional offices offer regularly scheduled public training classes. The courses are offered in
a traditional classroom form and via the Web. We also provide training seminars at customer sites. All
training classes and seminars include workshops to provide as much practical experience with Abaqus as
possible. For a schedule and descriptions of available classes, see the Training link at www.3ds.com/products-
services/simulia (www.3ds.com/products-services/simulia) or call your support office.

Feedback

We welcome any suggestions for improvements to Abaqus software, the support tool, or documentation.
We will ensure that any enhancement requests you make are considered for future releases. If you wish to
make a suggestion about the service or products, refer to www.3ds.com/simulia. Complaints should be made
by contacting your support office or by visiting SIMULIA→Quality Assurance at www.3ds.com/simulia
(www.3ds.com/simulia).

Abaqus ID:
Printed on:

Abaqus ID:
Printed on:

CONTENTS

Contents

PART I OVERVIEW

1. Introduction

What can I do with the Abaqus GUI Toolkit? 1.1

Prerequisites for using the Abaqus GUI Toolkit 1.2

Abaqus GUI Toolkit basics 1.3

Organization of the Abaqus GUI Toolkit User’s Guide 1.4

PART II GETTING STARTED

2. Getting started with the Abaqus GUI Toolkit

The kernel and GUI 2.1

What are the components of an Abaqus GUI application? 2.2

Plug-ins and customized applications 2.3

Running the prototype application 2.4

PART III BUILDING DIALOG BOXES

3. Widgets

Labels and buttons 3.1

Text widgets 3.2

Lists and combo boxes 3.3

Range widgets 3.4

Tree widgets 3.5

Table widget 3.6

Miscellaneous widgets 3.7

The create method 3.8

Widgets and fonts 3.9

4. Layout managers

An overview of layout managers 4.1

Padding and spacing 4.2

Horizontal and vertical frames 4.3

i

Abaqus ID:cus-toc

Printed on: Fri June 19 -- 9:39:29 2015

CONTENTS

Vertical alignment for composite children 4.4

General-purpose layout managers 4.5

Row and column layout manager 4.6

Resizable regions 4.7

Rotating regions 4.8

Tab books 4.9

Layout hints 4.10

Layout examples 4.11

Tips for specifying layout hints 4.12

5. Dialog boxes

An overview of dialog boxes 5.1

Modal versus modeless 5.2

Showing and hiding dialog boxes 5.3

Message dialog boxes 5.4

Custom dialog boxes 5.5

Data dialog boxes 5.6

Common dialog boxes 5.7

PART IV ISSUING COMMANDS

6. Commands

An overview of commands 6.1

The kernel and GUI processes 6.2

Executing commands 6.3

Kernel commands 6.4

GUI commands 6.5

AFXTargets 6.6

Accessing kernel data from the GUI 6.7

Receiving notification of kernel data changes 6.8

7. Modes

An overview of modes 7.1

Mode processing 7.2

Form modes 7.3

Procedure modes 7.4

Picking in procedure modes 7.5

ii

Abaqus ID:cus-toc

Printed on: Fri June 19 -- 9:39:29 2015

CONTENTS

PART V GUI MODULES AND TOOLSETS

8. Creating a GUI module

An overview of creating a GUI module 8.1

GUI module example 8.2

Registering a GUI module 8.3

Switching to a GUI module 8.4

9. Creating a GUI toolset

An overview of creating a GUI toolset 9.1

GUI Toolset example 9.2

Creating toolset components 9.3

Registering toolsets 9.4

10. Customizing an existing module or toolset

Modifying and accessing Abaqus/CAE GUI modules and toolsets 10.1

The File toolset 10.2

The Tree toolset 10.3

The Selection toolset 10.4

The Help toolset 10.5

An example of customizing a toolset 10.6

PART VI CREATING A CUSTOMIZED APPLICATION

11. Creating an application

Design overview 11.1

Startup script 11.2

Licensing and command line options 11.3

Installation 11.4

12. The application object

The application object 12.1

Common methods 12.2

13. The main window

An overview of the main window 13.1

The title bar 13.2

iii

Abaqus ID:cus-toc

Printed on: Fri June 19 -- 9:39:29 2015

CONTENTS

The menu bar 13.3

Toolbars 13.4

The context bar 13.5

The module toolbox 13.6

The drawing area and canvas 13.7

The prompt area 13.8

The message area 13.9

The command line interface 13.10

14. Customizing the main window

Modules and toolsets 14.1

The Abaqus/CAE main window 14.2

A. Icons

B. Colors and RGB values

C. Layout hints

iv

Abaqus ID:cus-toc

Printed on: Fri June 19 -- 9:39:29 2015

Part I: Overview
This part provides an overview of the Abaqus GUI Toolkit and how you use the toolkit to create a customized
application. This part also describes the layout of this guide. The following topic is covered:

• Chapter 1, “Introduction”

Abaqus ID:
Printed on:

WHAT CAN I DO WITH THE Abaqus GUI Toolkit?

1. Introduction

This chapter provides an overview of the Abaqus GUI Toolkit. The Abaqus GUI Toolkit is one of
the Abaqus Process Automation tools that allow you to modify and extend the capabilities of the
Abaqus/CAE graphical user interface (GUI) to enable a wide range of users to generate more efficient
Abaqus solutions. The following topics are covered:

• “What can I do with the Abaqus GUI Toolkit?,” Section 1.1
• “Prerequisites for using the Abaqus GUI Toolkit,” Section 1.2
• “Abaqus GUI Toolkit basics,” Section 1.3
• “Organization of the Abaqus GUI Toolkit User’s Guide,” Section 1.4

1.1 What can I do with the Abaqus GUI Toolkit?

There are many ways to customize Abaqus products:

• User subroutines allow you to change the way Abaqus/Standard and Abaqus/Explicit compute
analysis results. Information on user subroutines can be found in the Abaqus User Subroutines
Reference Guide.

• Environment files allow you to change various default settings. Information on environment files
can be found in the Abaqus Analysis User’s Guide.

• Kernel scripts allow you to create new functions to perform modeling or postprocessing tasks.
Information on kernel scripts can be found in the Abaqus Scripting User’s Guide.

• GUI scripts allow you to create new graphical user interfaces. GUI scripts are described in this
guide.

The Abaqus GUI Toolkit provides programming routines that allow you to create or modify
components of the GUI. The toolkit allows you to do the following:

• Create a new GUI module. A GUI module is a grouping of similar functionality, such as the Part
module in Abaqus/CAE.

• Create a new GUI toolset. A GUI toolset is similar to a GUI module in that it groups similar
functionality, but it generally contains more specific functionality that may be used by one or more
GUI modules. The Datum tools in Abaqus/CAE are an example of a GUI toolset.

• Create new dialog boxes. The Abaqus GUI Toolkit provides a full library of widgets from which
you can construct your own dialog boxes. However, the Abaqus GUI Toolkit is not designed to
allow you to modify existing Abaqus/CAE dialog boxes.

• Remove Abaqus/CAE GUI modules and toolsets. You can choose which GUI modules to include in
your application and which GUI modules to leave out. For example, the Abaqus/Viewer application
does not include the modeling-related GUI modules; it contains only the Visualization module.

1–1

Abaqus ID:
Printed on:

Abaqus GUI Toolkit BASICS

• Remove some top-level menus or some items in those top-level menus. For example, you could
remove the entire top-level Viewport menu to prevent users from manipulating viewports, or you
could remove the Import and Export menu items from the File menu.

• Perform limited changes to Abaqus/CAE GUI modules and toolsets. For more information, see
“Modifying and accessing Abaqus/CAE GUI modules and toolsets,” Section 10.1.

The Abaqus GUI Toolkit is not designed to run outside of Abaqus/CAE; it must be used with
Abaqus/CAE in order for the infrastructure to function properly.

1.2 Prerequisites for using the Abaqus GUI Toolkit

To write applications using the Abaqus GUI Toolkit, you need to have some experience in the following
areas:

Python programming

You should have some experience with the Python language before you write Abaqus/CAE kernel
scripts. You should have similar experience when you program GUI applications.

Abaqus kernel commands

The ultimate goal of the GUI is to send a command to the kernel for execution; therefore, you should
understand how kernel commands work.

Object-oriented programming

Python is an object-oriented language, and writing an application generally consists of deriving your
own new classes, writing methods for them, and manipulating their data. You should understand
the concepts of object-oriented programming.

GUI design

Depending on the complexity of your application, it may be helpful to have some training in user-
interface design and usability testing. This will help you create an application that is both intuitive
and easy to use.

Abaqus offers training classes that cover Python, kernel scripting, andGUI design. Formore information,
contact your local sales office. Training in GUI design is also available from a number of independent
training organizations.

1.3 Abaqus GUI Toolkit basics

The Abaqus GUI Toolkit is an extension of the FOX GUI Toolkit, just as the Abaqus Scripting Interface
is an extension of the Python programming language. FOX, which stands for Free Objects for X, is a
modern, object-oriented, platform-independent GUI toolkit. Since the Abaqus GUI Toolkit is platform-

1–2

Abaqus ID:
Printed on:

ORGANIZATION OF THE Abaqus GUI Toolkit USER’S GUIDE

independent, once you write an application for one platform, you can run that application on all supported
platforms—you do not need to change your source code.

The user interface produced by the Abaqus GUI Toolkit looks similar on all platforms. This is due
to the architecture of the toolkit. While the application programming interface (API) is the same on all
platforms, the underlying calls made to the operating system’s GUI libraries differ—on Linux systems
calls are made to the Xt library, whereas on Windows systems calls are made to the Win32 library.
These differences are hidden from the application developer.

Since the FOX GUI Toolkit is object oriented, it allows developers to extend its functionality easily
by deriving new classes from the base toolkit. The Abaqus GUI Toolkit takes advantage of this feature
by adding special functionality required for Abaqus GUIs. Class names that begin with FX are part of
the standard FOX library; for example, FXButton. Class names that begin with AFX are part of the
Abaqus extensions to the FOX library; for example, AFXDialog. When the same class exists with both
the FX and AFX prefix (for example, FXTable and AFXTable), you should use the AFX version since
it provides enhanced functionality for building applications using Abaqus.

1.4 Organization of the Abaqus GUI Toolkit User’s Guide

This guide is organized by functionality and is designed to guide developers through the process of
writing an application by explaining how to use the components of the toolkit and by providing snippets
of example code. A separate Abaqus GUI Toolkit Reference Guide that contains an alphabetical listing
of all of the toolkit calls is provided.

The Abaqus GUI Toolkit is based on the FOX GUI toolkit. While this guide explains some of the
basic concepts of the FOX toolkit, it does not provide details for many other aspects of the FOX toolkit.
For more details on the FOX GUI toolkit, refer to the FOX web site.

This guide consists of the following sections:

Widgets

This section describes some of the most commonly used widgets in the Abaqus GUI Toolkit.

Layout managers

This section describes how to use the various layout managers in the Abaqus GUI Toolkit to arrange
widgets in a dialog box.

Dialog boxes

This section describes the dialog boxes that you can create using the Abaqus GUI Toolkit.

Commands

In an application that employs a graphical user interface, the interface must collect input from
the user and communicate that input to the application. In addition, the graphical user interface
must keep its state up-to-date based on the state of the application. This section describes how

1–3

Abaqus ID:
Printed on:

ORGANIZATION OF THE Abaqus GUI Toolkit USER’S GUIDE

those tasks are accomplished using the Abaqus GUI Toolkit and the two types of commands in
Abaqus/CAE—kernel commands and GUI commands.

Modes

A mode is a mechanism for gathering input from the user, processing that input, and then
issuing a command to the kernel. This section describes the modes that are available in the
Abaqus GUI Toolkit.

Creating a GUI module

This section describes how you can create a GUI module.

Creating a GUI toolset

This section describes how you can create a GUI toolset.

Customizing an existing module or toolset

The previous sections describe how you can create a new module or toolset. Alternatively, the
Abaqus GUI Toolkit allows you to derive a new module or toolset from an existing module or
toolset and to add or remove functionality from it.

Creating an application

This section explains how to create an application, such as Abaqus/CAE. It also describes the high-
level infrastructure that is responsible for running the application.

The application object

This section describes the Abaqus application object. The application object manages the message
queue, timers, chores, GUI updating, and other system facilities.

The main window

This section describes the layout, components, and behavior of the Abaqus main window.

Customizing the main window

The main window base class provides the GUI infrastructure to allow user interaction, the
manipulation of modules, and the display of objects in the viewport. This section describes how
you add functionality to an application by deriving from the main window base class and then
registering modules and toolsets.

1–4

Abaqus ID:
Printed on:

Part II: Getting Started
This part describes an application that uses the Abaqus GUI Toolkit. This part also describes how you can
use the Abaqus GUI Toolkit to create plug-ins. The following topic is covered:

• Chapter 2, “Getting started with the Abaqus GUI Toolkit”

Abaqus ID:
Printed on:

WHAT ARE THE COMPONENTS OF AN Abaqus GUI APPLICATION?

2. Getting started with the Abaqus GUI Toolkit

This chapter provides an overview of a customized GUI application. The following topics are covered:

• “The kernel and GUI,” Section 2.1
• “What are the components of an Abaqus GUI application?,” Section 2.2
• “Plug-ins and customized applications,” Section 2.3
• “Running the prototype application,” Section 2.4

2.1 The kernel and GUI

Abaqus/CAE executes in two separate processes: the kernel and the GUI. The role of the kernel is to
provide access to Abaqus databases and the commands that create and modify those databases. The role
of the GUI is to collect user input, which is then packaged as a command string and sent to the kernel
for execution. The GUI is not essential to the execution of Abaqus—an entire model can be constructed,
analyzed, and post-processed through the use of kernel scripts, without ever invoking the GUI.

Typically, when you develop some custom functionality you start by creating the kernel commands
that implement that functionality. These commands can be debugged by executing them from the
command line interface (CLI) in Abaqus/CAE. Once you have determined that the kernel commands
are working correctly from the CLI, you can design a GUI to collect the user inputs needed by your
commands.

2.2 What are the components of an Abaqus GUI application?

There are many components involved in creating a GUI application. Figure 2–1 shows an overview
of these components and how they are connected. This section provides a brief overview of each
component. The components are discussed in more detail in subsequent chapters.

Widgets

At the lowest level of an application, you use widgets to collect input from the user through a
graphical user interface. For example, a text field widget presents a box into which the user can
type numbers. Similarly, a check button widget presents a small box that the user can click on to
toggle an option on or off.

Layout managers

Layout managers arrange widgets by providing alignment options. For example, a horizontal frame
arranges widgets in a row. A vertical frame arranges widgets in a column.

2–1

Abaqus ID:
Printed on:

WHAT ARE THE COMPONENTS OF AN Abaqus GUI APPLICATION?

Figure 2–1 An overview of an Abaqus GUI application.

Dialog boxes

Dialog boxes group widgets inside layout managers and present all the inputs required for a
particular function. For example, the Print dialog box presents all the controls that allow the user
to specify what should be printed and how it should be printed.

Modes

Modes are GUI mechanisms that control the display of a particular user interface. Modes are also
responsible for issuing the command associated with that user interface. For example, a mode is
started when you select File→Print. This mode posts the Print dialog box and issues the print
command when the user clicks OK.

Modules and toolsets

Modules and toolsets group functionality together. A GUI module is a grouping of similar
functionality, such as the Part module in Abaqus/CAE. A GUI toolset is similar to a GUI module
in that it groups similar functionality, but it generally contains more specific functionality that may
be used by one or more GUI modules. The Datum tools in Abaqus/CAE are an example of a GUI
toolset.

2–2

Abaqus ID:
Printed on:

RUNNING THE PROTOTYPE APPLICATION

The application

The application is responsible for high-level activities, such as managing the GUI process used by
the application and updating the state of the widgets. In addition, the application is responsible for
interacting with the desktop’s window manager.

2.3 Plug-ins and customized applications

There are two ways you can make use of the Abaqus GUI Toolkit—through the use of the plug-in
architecture or by creating a custom application. The Plug-in toolset is layered on top of Abaqus/CAE.
First, the Abaqus/CAE application is built, and then the Plug-in toolset searches specific directories
for files that add items into the top level Plug-ins menu. The Plug-in toolset will probably meet your
needs if you intend only to add functionality to the standard Abaqus/CAE application, and it is sufficient
to provide access to this functionality through the Plug-ins menu in the main menu bar. Plug-ins are
described in detail in Part VIII, “Using plug-ins,” of the Abaqus/CAE User’s Guide.

In contrast, to create a customized application, you build the application from the ground up. You
should write a customized application if, in addition to adding functionality to Abaqus/CAE, you want
to modify some standard features of Abaqus/CAE. While creating a custom application offers the most
flexibility, it requires more work than using the Plug-in toolset. However, a custom application allows
you to modify aspects of an application that you cannot control using the Plug-in toolset. Specifically, a
custom application allows you to do the following:

• Remove Abaqus/CAE modules or toolsets. When you create a custom application, you determine
which modules and toolsets are loaded into the application and the order in which they appear.

• Modify Abaqus/CAE modules or toolsets. If you want to add or remove functionality from an
Abaqus/CAE module, you must derive your module from an Abaqus/CAE module and then register
your module instead of the Abaqus/CAE module. You follow a similar procedure if you want to
add or remove functionality from an Abaqus/CAE toolset.

• Change the application name and version numbers. When you create a custom application, you
create a startup script that initializes the application object with the name of your application and
its version numbers.

• Control the startup command and license token used. When you create a custom application, you
modify the site configuration file that defines the command used to start the application. You also
modify the same site configuration file to specify the license token that is checked out when the
application starts.

2.4 Running the prototype application

A custom application called the prototype application is available from the SIMULIA Learning
Community. The prototype application allows you to experiment with the contents of your dialog box

2–3

Abaqus ID:
Printed on:

RUNNING THE PROTOTYPE APPLICATION

until you produce a design that is satisfactory. You can start the prototype application, make changes to
the code that controls the contents of the dialog box, and instantly see those changes reflected in the
application.

The SIMULIA Learning Community provides examples of plug-ins and customized applications
as well as access to a community of users that fosters the advance of the Abaqus Scripting Interface and
the Abaqus GUI Toolkit. Search in this community for “Prototype Example” to download the zip file
for the prototype application, then unzip the files and go to the directory containing the files that you
downloaded. To use the prototype application, open the file testDB.py in a text editor. From the
system prompt, enter the following:

abaqus cae -custom prototypeApp -noStartup

The -custom parameter indicates that you are executing an application that is a customized version
of Abaqus/CAE. The -noStartup parameter indicates that you want to start Abaqus/CAE without
displaying the startup screen. For more information, see “Abaqus/CAE execution,” Section 3.2.7 of the
Abaqus Analysis User’s Guide.

The application creates two icons in the toolbox, as shown in Figure 2–2.

Figure 2–2 The prototype application.

The icon reloads the form code (testForm.py); the icon reloads the dialog box code

(testDB.py). If you make changes to the form code, click on the icon to reload that file. If you

make changes to the dialog box code, click on the icon to reload that file. You do not need to exit
and restart Abaqus/CAE to see your changes in the form or dialog box.

For example, try the following:

• Click the icon to post the dialog box and note the text labels shown in the dialog box.

• Click Cancel in the dialog box to unpost it.

2–4

Abaqus ID:
Printed on:

RUNNING THE PROTOTYPE APPLICATION

• Change one of the labels in testDB.py and save the file.

• Click the icon to post the dialog box again. You will see the modified label in the dialog box.

When you click OK in the dialog box, the kernel command issued by the dialog box is written to
the message area, rather than being executed by Abaqus/CAE. This allows you to debug the command
before you try to execute it in the kernel.

After you have debugged your form and dialog box code, you can modify the form to issue the
command to the kernel by following the example in “Form example,” Section 7.3.1. You can connect

the form to your GUI, instead of to the icon, by following the example shown in “GUI module
example,” Section 8.2.

2–5

Abaqus ID:
Printed on:

Part III: Building dialog boxes
This part describes the components of a dialog box and how you create the components using the
Abaqus GUI Toolkit. The following topics are covered:

• Chapter 3, “Widgets”
• Chapter 4, “Layout managers”
• Chapter 5, “Dialog boxes”

Abaqus ID:
Printed on:

LABELS AND BUTTONS

3. Widgets

This section describes how you can create widgets in your application. There are many widgets in the
Abaqus GUI Toolkit; however, only the most commonly used widgets are described here. You should
refer to the Abaqus GUI Toolkit Reference Guide for a complete listing of widget classes. The following
topics are covered:

• “Labels and buttons,” Section 3.1
• “Text widgets,” Section 3.2
• “Lists and combo boxes,” Section 3.3
• “Range widgets,” Section 3.4
• “Tree widgets,” Section 3.5
• “Table widget,” Section 3.6
• “Miscellaneous widgets,” Section 3.7
• “The create method,” Section 3.8
• “Widgets and fonts,” Section 3.9

3.1 Labels and buttons

This section describes the widgets in the Abaqus GUI Toolkit that use labels and buttons. The following
topics are covered:

• “An overview of labels and buttons,” Section 3.1.1
• “Labels,” Section 3.1.2
• “Push buttons,” Section 3.1.3
• “Check buttons,” Section 3.1.4
• “Radio buttons,” Section 3.1.5
• “Menu buttons,” Section 3.1.6
• “Popup menus,” Section 3.1.7
• “Toolbar and toolbox buttons,” Section 3.1.8
• “Flyout buttons,” Section 3.1.9
• “Color buttons,” Section 3.1.10

3–1

Abaqus ID:
Printed on:

LABELS AND BUTTONS

3.1.1 An overview of labels and buttons
Several widgets in the Abaqus GUI Toolkit support labels. If you want to put a label before a text field,
for example, you should use AFXTextField instead of creating a horizontal frame and adding a label
widget and a text field widget. The following sections describe the specific widgets that support labels.

The label and button constructors all take a text string argument. This text string can consist of three
parts, where each part is separated by \t. The three parts of the text string are

Text

The text displayed by the widget.

Tip text

The text displayed when the cursor is held over the widget for a short period of time. If there is only
an icon associated with a widget, you must supply the tip text.

Help text

The text displayed in the application’s status bar, assuming that the application has a status bar.

In addition, you can define a keyboard accelerator for the widget by preceding one of the characters in
the text with an ampersand (&) character. For example, if you specify the string &Calculate for a
button, the button label will appear as shown in Figure 3–1. You can use the accelerator to invoke the
button by pressing the [Alt] key along with the [C] key.

Figure 3–1 A keyboard accelerator applied to a button.

3.1.2 Labels
The FXLabel widget displays a read-only string. FXLabel can also display an optional icon.

FXLabel(parent, 'This is an FXLabel.\tThis is\nthe tooltip')

Figure 3–2 An example of a text label from FXLabel.

3–2

Abaqus ID:
Printed on:

LABELS AND BUTTONS

3.1.3 Push buttons

The FXButton widget contains a label and/or an icon. When the user clicks the button, an immediate
action is invoked.

FXButton(parent, 'This is an FXButton')

Figure 3–3 An example of a button from FXButton.

3.1.4 Check buttons

The FXCheckButton widget provides an “On/Off” toggling capability. The button also supports a
third “Maybe” or “Some” state. The “Maybe” state is often used to represent a partial selection; for
example, the AFXOptionTreeListwidget makes use of the “Maybe” state. You can set the “Maybe”
state only programmatically; the user cannot toggle the button to this state.

FXCheckButton(parent, 'This is an FXCheckButton')

Figure 3–4 An example of a check button and a label from FXCheckButton.

3.1.5 Radio buttons

The FXRadioButton widget provides a one-of-many selection from a group of buttons.

FXRadioButton(parent, 'This is FXRadioButton 1')
FXRadioButton(parent, 'This is FXRadioButton 2')
FXRadioButton(parent, 'This is FXRadioButton 3')

3–3

Abaqus ID:
Printed on:

LABELS AND BUTTONS

Figure 3–5 An example of radio buttons from FXRadioButton.

3.1.6 Menu buttons
A menu consists of the following:

• A menu title created by AFXMenuTitle.
• A menu pane created by AFXMenuPane.
• A menu command created by AFXMenuCommand.

The menu title resides in a menu bar and controls the display of the menu pane associated with the menu
title. The menu pane contains menu commands. Menu commands are buttons that generally invoke some
action. A menu pane can also contain a cascading menu created by AFXMenuCascade. A cascading
menu provides submenus within a menu. Figure 3–6 illustrates the components of a menu.

MenuTitle MenuTitle MenuTitle

MenuCommand

MenuCommand

MenuCommand

MenuCascade MenuCommand

MenuCommand

Menu Bar

Menu Pane

Figure 3–6 The components of a menu.

The following example illustrates the use of cascading menus:

menu = AFXMenuPane(self)
AFXMenuTitle(self, '&Menu1', None, menu)
AFXMenuCommand(self, menu, '&Item 1', None, form1,

AFXMode.ID_ACTIVATE)
subMenu = AFXMenuPane(self)
AFXMenuCascade(self, menu, '&Submenu', None, subMenu)
AFXMenuCommand(self, subMenu, '&Subitem 1', None,

3–4

Abaqus ID:
Printed on:

LABELS AND BUTTONS

form2, AFXMode.ID_ACTIVATE)

Figure 3–7 An example of cascading menu buttons from AFXMenuCascade.

In addition to specifying a mnemonic using the & syntax described in “Labels and buttons,”
Section 3.1, you can specify an accelerator in the menu item’s label. You specify an accelerator by
separating it from the button’s text by a \t. For example,

AFXMenuCommand(self, menu, 'Graphics Options...\tCtrl+G', None,
GraphicsOptionsForm(self), AFXMode.ID_ACTIVATE)

3.1.7 Popup menus
You can create a popup menu that appears when the user clicks mouse button 3 over a widget. For
example, the following statements illustrate how you can create a popup menu that contains two buttons
that appear when the user clicks mouse button 3 over a tree widget:

In the dialog box constructor:

def __init__(self, form):

...

FXMAPFUNC(self, SEL_RIGHTBUTTONPRESS, self.ID_TREE,
MyDB.onCmdPopup)

FXMAPFUNC(self, SEL_COMMAND, self.ID_TEST1,
MyDB.onCmdTest1)

FXMAPFUNC(self, SEL_COMMAND, self.ID_TEST2,
MyDB.onCmdTest2)

self.menuPane = None

FXTreeList(self, 5, self, self.ID_TREE,
LAYOUT_FILL_X|LAYOUT_FILL_Y|
TREELIST_SHOWS_BOXES|TREELIST_SHOWS_LINES|
TREELIST_ROOT_BOXES|TREELIST_BROWSESELECT)

3–5

Abaqus ID:
Printed on:

LABELS AND BUTTONS

...

def onCmdPopup(self, sender, sel, ptr):

if not self.menuPane:
self.menuPane = FXMenuPane(self)
FXMenuCommand(self.menuPane, 'Test1', None, self,

self.ID_TEST1)
FXMenuCommand(self.menuPane, 'Test2', None, self,

self.ID_TEST2)
self.menuPane.create()

status, x, y, buttons = self.getCursorPosition()
x, y = self.translateCoordinatesTo(self.getRoot(), x, y)
self.menuPane.popup (None, x, y)

return 1

Note: The AFXTable has its own popup menu commands that you should use in place of the approach
described in this section.

3.1.8 Toolbar and toolbox buttons

The AFXToolButton widget displays no text in its button, but the button generally has a tool tip.
You group the buttons created by AFXToolButton into toolbars using AFXToolbarGroups or into
toolboxes using AFXToolboxGroups. AFXToolbarGroups and AFXToolboxGroups provide
visual grouping between buttons in the toolbar or toolbox. For example,

Create toolbar icons
#
group = AFXToolbarGroup(self)
AFXToolButton(group, '\tMy Module\nToolbar Button',

icon, sel)

Create toolbox icons
#
group = AFXToolboxGroup(self)
AFXToolButton(group, '\tMy Module\nToolbox Button',

icon, sel)

3–6

Abaqus ID:
Printed on:

LABELS AND BUTTONS

3.1.9 Flyout buttons
The AFXFlyoutButton widget displays a flyout popup window. The flyout popup window contains
AFXFlyoutItem widgets and appears when the user presses mouse button 1 on the button and holds
down mouse button 1 for a certain time span. If the user simply clicks mouse button 1 quickly on the
button, the flyout popup window will not be displayed, and the flyout button will act just like a regular
button. The AFXFlyoutButton widget displays the icon of the current target along with a right
triangle in the lower right corner to indicate that a flyout popup window can be invoked. For example,

group = AFXToolbarGroup(self)
popup = FXPopup(getAFXApp().getAFXMainWindow())
AFXFlyoutItem(popup, '\tFlyout Button 1', squareIcon)
AFXFlyoutItem(popup, '\tFlyout Button 2', circleIcon)
AFXFlyoutItem(popup, '\tFlyout Button 3', triangleIcon)
AFXFlyoutButton(group, popup)
popup.create()

Figure 3–8 An example of flyout buttons from AFXFlyoutItem.

3.1.10 Color buttons
The AFXColorButton widget displays a push button that shows a color. Clicking the button posts the
color selection dialog box, which the user can use to change the value of the color for the button. For
example,

AFXColorButton(parent, 'Color:')

Figure 3–9 An example of an AFXColorButton.

When connected to an AFXStringKeyword, this widget will assign the value of the button’s
current color to the keyword in hex format; for example, "#FF0000".

3–7

Abaqus ID:
Printed on:

TEXT WIDGETS

3.2 Text widgets

This section describes the widgets in the Abaqus GUI Toolkit that allow the user to input text. The
following topics are covered:

• “Single line text field widget,” Section 3.2.1
• “Multi-line text widget,” Section 3.2.2

3.2.1 Single line text field widget
The AFXTextField widget provides a single line text entry field. AFXTextField extends the
capability of the standard FXTextField widget with the following:

• An optional label.
• Support for a toggled version and a read-only state.
• An additional numeric type (complex).
• Horizontal and vertical layouts.

For example,

AFXTextField(parent, 8, 'String AFXTextField')

Figure 3–10 An example of a single-line text field from AFXTextField.

Text fields are generally connected to keywords, and the type of the keyword determines the type
of input allowed in the text field. For example, if the text field is connected to an integer keyword, the
keyword will verify that the input in the text field is a valid integer. You do not need to specifiy any option
flags for the text field to get this behavior. Complex text fields are an exception to this—to display the
extra field needed to collect complex input, you must specify the bit flag shown in the following example:

AFXTextField(parent, 8, 'Complex AFXTextField',
None, 0, AFXTEXTFIELD_COMPLEX)

Figure 3–11 An example of a single-line complex numeric field from AFXTextField.

3–8

Abaqus ID:
Printed on:

TEXT WIDGETS

Toggled variation

In many cases a check button precedes a labeled text field. The check button allows the user
to toggle the component on or off; when the component is toggled off, the text field becomes
disabled. The AFXTextField widget creates a check button with this behavior when you supply
the AFXTEXTFIELD_CHECKBUTTON flag. The following example creates a check button with
a text field. It also configures the widget in a vertical orientation so that the label is above the text
field.

AFXTextField(parent, 8, 'AFXTextField', None, 0,
AFXTEXTFIELD_CHECKBUTTON|AFXTEXTFIELD_VERTICAL)

Figure 3–12 An example of a check button with a labeled text field from AFXTextField.

Non-editable variation
In some cases you may want to change the behavior of a text field so that it cannot be edited
by the user; for example, when a particular check button in the dialog box is not set. In this
case, you can make the text field non-editable when the check button is unset by calling the
setEditable(False) method of the AFXTextField widget.

Read-only variation
In some cases you may want to change the behavior of a text field so that it cannot be edited by the
user and appears as a label, making it clear that the user cannot change its contents. For example,
when you are using the Load module in Abaqus/CAE, there are some values that you can specify
in the analysis step in which the load was created but you cannot change in subsequent steps. The
AFXTextField widget supports a read-only state through the setReadOnlyState method.
For example,

tf = AFXTextField(parent, 8,
'String AFXTextField in read-only mode:', keyword)

tf.setReadOnlyState(True)

3.2.2 Multi-line text widget

FXText provides a multi-line text entry area. For example,

text = FXText(parent, None, 0,
LAYOUT_FIX_WIDTH|LAYOUT_FIX_HEIGHT, 0, 0, 300, 100)

text.setText('This is an FXText widget')

3–9

Abaqus ID:
Printed on:

LISTS AND COMBO BOXES

Figure 3–13 An example of a multi-line text entry area from FXText.

3.3 Lists and combo boxes

This section describes the widgets in the Abaqus GUI Toolkit that allow you to choose one or more items
from a list.

• You use a list widget when there is enough room in the GUI and when it is helpful to display all or
most of the choices at the same time.

• You use a combo box to conserve space in the GUI and when it is preferable to display only the
current choice.

The following topics are covered:

• “Lists,” Section 3.3.1
• “Combo boxes,” Section 3.3.2
• “List boxes,” Section 3.3.3

3.3.1 Lists
AFXList allows one or more selections from its items.

The list created by AFXList supports the following selection policies:

LIST_SINGLESELECT

The user can select zero or one items.

LIST_BROWSESELECT

One item is always selected.

LIST_MULTIPLESELECT

The user can select zero or more items.

3–10

Abaqus ID:
Printed on:

LISTS AND COMBO BOXES

LIST_EXTENDEDSELECT

The user can select zero or more items; drag-, shift-, and control-selections are allowed.

The AFXDialog base class has special code designed to handle double-click messages from a list.
If the user double-clicks in a list, the dialog box first attempts to call theApply button message handler. If
the Apply button message handler is not found, the dialog attempts to call the Continue button message
handler. If the Continue button message handler is not found, the dialog attempts to call the OK button
message handler. As a result, you do not need to do anything in your script to get this behavior.

However, if you have special double-click processing needs, you can turn off this double-click
behavior by specifying AFXLIST_NO_AUTOCOMMIT as one of the list’s option flags. If you turn off
the double-click behavior, you must catch the SEL_DOUBLECLICKED message from the list in your
dialog box and handle it appropriately.

Note: Because the list may be used in combination with other types of widgets, the list does not draw
a border around itself. As a result, if you want a border around the list, you must provide the border by
placing the list inside some other widget, such as a frame. If you do not want a horizontal scrollbar, use
the HSCROLLING_OFF flag; this flag forces the list to size its width to fit its widest item.

The following is an example of a list within a vertical frame:

vf = FXVerticalFrame(parent, FRAME_THICK|FRAME_SUNKEN,
0, 0, 0, 0, 0, 0, 0, 0)

list = AFXList(vf, 3, tgt, sel, LIST_BROWSESELECT|HSCROLLING_OFF)
list.appendItem('Thin')
list.appendItem('Medium')
list.appendItem('Thick')

Figure 3–14 An example of a list with a frame from AFXList.

3.3.2 Combo boxes
AFXComboBox provides a one-of-many selection from its items. AFXComboBox combines a read-only
text field with a drop-down list.

After the parent argument, the next three arguments to the AFXComboBox constructor are the width
of the text field, the number of visible list items when the list is exposed, and the label. If you specify
the width as zero, the combo box will automatically size itself to the widest item in its list. For example,

3–11

Abaqus ID:
Printed on:

RANGE WIDGETS

comboBox = AFXComboBox(p, 0, 3, 'AFXComboBox:')
comboBox.appendItem('Item 1')
comboBox.appendItem('Item 2')
comboBox.appendItem('Item 3')

Figure 3–15 An example of a combo box from AFXComboBox.

3.3.3 List boxes
The AFXListBox widget provides a one-of-many selection from its items. AFXListBox differs from
AFXComboBox in that the items displayed by AFXListBox can include icons. For example,

listBox = AFXListBox(parent, 3, 'AFXListBox:', keyword)
listBox.appendItem('Item 1', thinIcon)
listBox.appendItem('Item 2', mediumIcon)
listBox.appendItem('Item 3', thickIcon)

Figure 3–16 An example of a list box from AFXListBox.

3.4 Range widgets

This section describes the widgets in the Abaqus GUI Toolkit that allow the user to specify a value within
certain bounds. The following topics are covered:

• “Sliders,” Section 3.4.1
• “Spinners,” Section 3.4.2

3.4.1 Sliders
The AFXSlider widget provides a handle that the user can drag to set a value using only the mouse.
AFXSlider extends the capability of the FXSlider widget by providing the following:

• An optional title.

3–12

Abaqus ID:
Printed on:

TREE WIDGETS

• Minimum and maximum range labels.
• The ability to display the current value above the drag handle.

For example,

slider = AFXSlider(p, None, 0,
AFXSLIDER_INSIDE_BAR|AFXSLIDER_SHOW_VALUE|LAYOUT_FILL_X)

slider.setMinLabelText('Min') slider.setMaxLabelText('Max')
slider.setDecimalPlaces(1)
slider.setRange(20, 80)
slider.setValue(50)

Figure 3–17 An example of a slider from AFXSlider.

3.4.2 Spinners
The AFXSpinner widget combines a text field and two arrow buttons. The arrows increment the
integer value shown in the text field. AFXSpinner extends the capability of the FXSpinner widget
by providing an optional label. For example,

spinner = AFXSpinner(p, 4, 'AFXSpinner:')
spinner.setRange(20, 80)
spinner.setValue(50)

Figure 3–18 An example of a spinner from AFXSpinner.

The AFXFloatSpinner widget is similar to the AFXSpinner widget, but it allows floating
point values.

3.5 Tree widgets

This section describes the tree widgets in the Abaqus GUI Toolkit. A tree widget arranges its children in
a hierarchical fashion and allows the various branches to be expanded or collapsed. A file browser such

3–13

Abaqus ID:
Printed on:

TREE WIDGETS

as Microsoft Windows Explorer is a common example of an application that makes use of a tree widget.
The following topics are covered:

• “Tree list,” Section 3.5.1
• “Option tree list,” Section 3.5.2

3.5.1 Tree list
The FXTreeList widget provides a tree structure of children that can be expanded and collapsed. The
FXTreeList constructor is defined by the following prototype:

FXTreeList(p, nvis, tgt=None, sel=0,
opts=TREELIST_NORMAL, x=0, y=0, w=0, h=0)

The arguments to the FXTreeList constructor are described in the following list:

parent

The first argument in the constructor is the parent. An FXTreeList does not draw a frame around
itself; therefore, you may want to create an FXVerticalFrame to use as the parent of the tree.
You should zero out the padding in the frame so that the frame wraps tightly around the tree.

number of visible items

The number of items that will be visible when the tree is first displayed.

target and selector

You can specify a target and selector in the tree constructor arguments.

opts

The option flags that you can specify in the tree constructor are shown in the following table:

Option flag Effect

TREELIST_NORMAL (default) TREELIST_EXTENDEDSELECT

TREELIST_EXTENDEDSELECT Extended selection mode allows the user to
drag-select ranges of items.

TREELIST_SINGLESELECT Single selection mode allows the user to
select up to one item.

TREELIST_BROWSESELECT Browse selection mode enforces one single
item to be selected at all times.

TREELIST_MULTIPLESELECT Multiple selection mode is used for selection
of individual items.

TREELIST_AUTOSELECT Automatically select under cursor.

3–14

Abaqus ID:
Printed on:

TREE WIDGETS

Option flag Effect

TREELIST_SHOWS_LINES Show lines between items.

TREELIST_SHOWS_BOXES Show boxes when item can expand.

TREELIST_ROOT_BOXES Show root item boxes also.

The following statements show an example of creating a tree:

vf = FXVerticalFrame(gb, FRAME_SUNKEN|FRAME_THICK,
0,0,0,0, 0,0,0,0)

tree = FXTreeList(vf, 5, None, 0,
LAYOUT_FILL_X|LAYOUT_FILL_Y|
TREELIST_SHOWS_BOXES|TREELIST_ROOT_BOXES|
TREELIST_SHOWS_LINES|TREELIST_BROWSESELECT)

You add an item to a tree by supplying a parent and a text label. You begin by adding root items to
the tree. Root items have a parent of None. The Abaqus GUI Toolkit provides several ways of adding
items to a tree; however, the most convenient approach uses the addItemLast method, as shown in
the following example:

vf = FXVerticalFrame(gb, FRAME_SUNKEN|FRAME_THICK,
0,0,0,0, 0,0,0,0)

self.tree = FXTreeList(vf, 5, None, 0,
LAYOUT_FILL_X|LAYOUT_FILL_Y|
TREELIST_SHOWS_BOXES|TREELIST_ROOT_BOXES|
TREELIST_SHOWS_LINES|TREELIST_BROWSESELECT)

option1 = self.tree.addItemLast(None, 'Option 1')
self.tree.addItemLast(option1, 'Option 1a')
self.tree.addItemLast(option1, 'Option 1b')
option2 = self.tree.addItemLast(None, 'Option 2')
self.tree.addItemLast(option2, 'Option 2a')
option2b = self.tree.addItemLast(option2, 'Option 2b')
self.tree.addItemLast(option2b, 'Option 2bi')
option3 = self.tree.addItemLast(None, 'Option 3')

3–15

Abaqus ID:
Printed on:

TREE WIDGETS

Figure 3–19 An example of a tree widget.

You can also specify icons to be used for each tree item. The “open” icon is displayed next to an
item when it is selected; the “closed” icon is displayed when the item is not selected. These icons are not
associated with the expanded/collapsed state of a branch. For example, Microsoft’s Windows Explorer
uses open and closed folder icons to show the selected state.

You can check if an item is selected using the tree’s isItemSelected method. The tree widget
will send its target a SEL_COMMAND message whenever the user clicks on an item. You can handle
this message and then traverse all the items in the tree to find the selected item. The following example
uses a message handler that assumes that the tree is browse-select and allows the user to select only one
item at a time:

def onCmdTree(self, sender, sel, ptr):

w = self.tree.getFirstItem()
while(w):

if self.tree.isItemSelected(w):
Do something here based on
the selected item, w.
break

if w.getFirst():
w=w.getFirst()
continue

while not w.getNext() and w.getParent():
w=w.getParent()

w=w.getNext()

3–16

Abaqus ID:
Printed on:

TABLE WIDGET

3.5.2 Option tree list

The AFXOptionTreeList widget provides a tree structure of children that can be toggled. The tree
structure includes branches along with leaves at the end of a branch. The user can toggle the leaves of
the tree on or off. The user can also toggle the entire branch on or off. The toggle controls the settings
of all the children of the branch—if the branch is toggled off, all the children are toggled off and vice
versa. For example,

tree = AFXOptionTreeList(parent, 6)
tree.addItemLast('Item 1')
item = tree.addItemLast('Item 2')
item.addItemLast('Item 3')
item.addItemLast('Item 4')
item.addItemLast('Item 5')

Figure 3–20 An example of an option tree list from AFXOptionTreeList.

3.6 Table widget

The AFXTable widget arranges items in rows and columns, similar to a spreadsheet. The table can
have leading rows and columns, which serve as headings. Figure 3–21 shows an example of how the
Abaqus GUI Toolkit lays out a table.

3–17

Abaqus ID:
Printed on:

TABLE WIDGET

leading row

leading column

items

Figure 3–21 The layout of a table.

The AFXTable widget has many options and methods that allow a lot of flexibility when you
are trying to configure a table for specific purposes. These options and methods are discussed in the
following sections. The following topics are covered:

• “Table constructor,” Section 3.6.1
• “Rows and columns,” Section 3.6.2
• “Spanning,” Section 3.6.3
• “Justification,” Section 3.6.4
• “Editing,” Section 3.6.5
• “Types,” Section 3.6.6
• “List type,” Section 3.6.7
• “Boolean type,” Section 3.6.8
• “Icon type,” Section 3.6.9
• “ Color type,” Section 3.6.10
• “Popup menu,” Section 3.6.11
• “Colors,” Section 3.6.12
• “Sorting,” Section 3.6.13

3.6.1 Table constructor
The AFXTable constructor is defined by the following prototype:

AFXTable(p, numVisRows, numVisColumns, numRows, numColumns,
tgt=None, sel=0, opts=AFXTABLE_NORMAL,
x=0, y=0, w=0, h=0,
pl= DEFAULT_MARGIN, pr=DEFAULT_MARGIN,
pt=DEFAULT_MARGIN, pb=DEFAULT_MARGIN)

The AFXTable constructor has the following arguments:

3–18

Abaqus ID:
Printed on:

TABLE WIDGET

parent

The first argument in the constructor is the parent. An AFXTable does not draw a frame around
itself; therefore, you may want to create an FXVerticalFrame to use as the parent of the table.
You should zero out the padding in the frame so that the frame wraps tightly around the table.

number of visible rows and columns

The number of rows and columns that will be visible when the table is first displayed. If the
number of visible rows or columns is less than the total number of rows or columns in the table, the
appropriate scroll bars are displayed.

number of rows and columns

The number of rows and columns to be created when the table is created. These numbers include
leading rows and columns. If the size of the table is fixed, you specify the total number of rows
and columns. If the size of the table is dynamic, you specify 1 row and 1 column (plus any leading
rows or columns) and allow the user to add rows or columns as necessary.

target and selector

You can specify a target and selector in the table constructor arguments. A table is generally
connected to an AFXTableKeyword with a selector of 0, unless the table has columns that are
not directly related to the data required by the command to be sent to the kernel. If the table has
columns that are not required by the kernel, you can specify the dialog as the target so that the data
in the table can be processed appropriately by your code. You can also use the AFXColumnItems
object to manage selection in particular table column automatically (for more information, see
“Table keyword example,” Section 6.5.14).

opts

The option flags that you can specify in the table constructor are shown in the following table:

Option flag Effect

AFXTABLE_NORMAL (default) AFXTABLE_COLUMN_RE-
SIZABLE | LAYOUT_FILL_X |
LAYOUT_FILL_Y

AFXTABLE_COLUMN_RESIZABLE Allows columns to be resized by the
user.

AFXTABLE_ROW_RESIZABLE Allows rows to be resized by the user.

AFXTABLE_RESIZE AFXTABLE_COLUMN_RESIZABLE
| AFXTABLE_ROW_RESIZABLE

AFXTABLE_NO_COLUMN_SELECT Disallows selecting the entire column
when its heading is clicked.

3–19

Abaqus ID:
Printed on:

TABLE WIDGET

Option flag Effect

AFXTABLE_NO_ROW_SELECT Disallows selecting the entire row when
its heading is clicked.

AFXTABLE_SINGLE_SELECT Allows up to one item to be selected.

AFXTABLE_BROWSE_SELECT Enforces one single item to be selected
at all times.

AFXTABLE_ROW_MODE Selecting an item in a row selects the
entire row.

AFXTABLE_EDITABLE Allows all items in the table to be
edited.

By default, the user can select multiple items in a table. To change this behavior, you should
use the appropriate flag to specify either single select mode or browse select mode. In addition, you
can specify whether the entire row should be selected when the user selects any item in the row.
Abaqus/CAE exhibits this behavior in manager dialogs that contain more than one column.

The following statements creates a table with default settings:

Tables do not draw a frame around their border.
Therefore, add a frame widget with zero padding.

vf = FXVerticalFrame(gb, FRAME_SUNKEN|FRAME_THICK,
0,0,0,0, 0,0,0,0)

table = AFXTable(vf, 4, 2, 4, 2)

Figure 3–22 A table created with default settings.

3.6.2 Rows and columns
The table supports leading rows and columns. Leading rows and columns are displayed as buttons using
a bold text. Leading rows are displayed at the top of the table, and leading columns are displayed on the
left side of the table.

3–20

Abaqus ID:
Printed on:

TABLE WIDGET

The number of rows and columns that you specify in the table constructor are the total number of
rows and columns, including the leading rows and columns. By default, the table has no leading rows or
columns—you must set the leading rows and columns after the table is constructed using the appropriate
table methods. You can also specify the labels to be displayed in these rows and columns. If you do not
specify any labels for a leading row or column, it will be numbered automatically. You can set more than
one label at once in a heading by using “\t” to separate the labels in a single string.

By default, no gridlines are drawn around items. You can control the visibility of the horizontal and
vertical gridlines individually by using the following table methods:

showHorizontalGrid(True|False)

showVerticalGrid(True|False)

By default, the height of the rows is determined by the font being used for the table. The default width
of a column is 100 pixels. You can override these values using the following table methods:

setRowHeight(row, height) # Height is in pixels

setColumnWidth(column, width) # Width is in pixels

The following example illustrates the use of some of these methods:

vf = FXVerticalFrame(parent, FRAME_SUNKEN|FRAME_THICK,
0,0,0,0,0,0,0,0)

table = AFXTable(vf, 4, 3, 4, 3)
table.setLeadingColumns(1)
table.setLeadingRows(1)
table.setLeadingRowLabels('X\tY')
table.showHorizontalGrid(True)
table.showVerticalGrid(True)
table.setColumnWidth(0, 30)

Figure 3–23 Leading rows and columns.

3.6.3 Spanning
You can make an item in a header row or column span more than one row or column, as shown in the
following example:

vf = FXVerticalFrame(parent, FRAME_SUNKEN|FRAME_THICK,
0,0,0,0, 0,0,0,0)

3–21

Abaqus ID:
Printed on:

TABLE WIDGET

table = AFXTable(vf, 4, 3, 4, 3)
table.setLeadingColumns(1)
table.setLeadingRows(2)

Corner item
table.setItemSpan(0, 0, 2, 1)

Span top row item over 2 columns
table.setItemSpan(0, 1, 1, 2)
table.setLeadingRowLabels('Coordinates')
table.setLeadingRowLabels('X\tY', 1)

table.showHorizontalGrid(True)
table.showVerticalGrid(True)

table.setColumnWidth(0, 30)

Figure 3–24 An example of spanning two header columns.

3.6.4 Justification
By default, the table displays entries left justified. You can change how items are justified by using the
following table methods:

setColumnJustify(column, justify)

setItemJustify(row, column, justify)

If you supply a value of -1 for the column number, the setColumn* methods apply the setting to all
columns in the table.

The following table shows the possible values for the justify argument:

Option flag Effect

AFXTable .LEFT Align items to the left side of the cell.

AFXTable .CENTER Center items horizontally.

3–22

Abaqus ID:
Printed on:

TABLE WIDGET

Option flag Effect

AFXTable .RIGHT Align items to the right side of the cell.

AFXTable .TOP Align items to the top of the cell.

AFXTable .MIDDLE Center items vertically.

AFXTable .BOTTOM Align items to the bottom of the cell.

The following example shows how you can change the justification:

vf = FXVerticalFrame(gb, FRAME_SUNKEN|FRAME_THICK,
0,0,0,0, 0,0,0,0)

table = AFXTable(vf, 4, 3, 4, 3)
table.setLeadingColumns(1)
table.setLeadingRows(1)
table.setLeadingRowLabels('X\tY')
table.showHorizontalGrid(True)
table.showVerticalGrid(True)
table.setColumnWidth(0, 30)

Center all columns
table.setColumnJustify(-1, AFXTable.CENTER)

Figure 3–25 Justified column headings.

3.6.5 Editing
By default, no items in a table are editable. To make all items in a table editable, you must specify
AFXTABLE_EDITABLE in the table constructor. To change the editability of some items in a table,
you can use the following table methods:

setColumnEditable(column, True|False)

setItemEditable(row, column, True|False)

3–23

Abaqus ID:
Printed on:

TABLE WIDGET

3.6.6 Types
By default, all items in a table are text items. However, the table widget also supports the other types of
items shown in the following table:

Type Effect

BOOL Item shows an icon, clicking on it toggles between a true and false icon.

COLOR Item shows a color button

FLOAT Item shows text, a text field is used to edit the value

ICON Item shows an icon, it is not editable.

INT Item shows text, a text field is used to edit the value

LIST Item shows text, a combo box is used to edit the value.

TEXT Item shows text, a text field is used to edit the value.

You can change the type of a column or the type of an individual item using the following table methods:

setColumnType(column, type)

setItemType(row, column, type)

Setting the type to FLOAT or INT does not affect data entry to the table; the user may enter anything
into these types of items (this allows for expression evaluation). However, when using the table’s
getItemIntValue or getItemFloatValuemethods you should be sure that the type of the item
that you are reading is INT or FLOAT, respectively, or the wrong value may be returned. In general,
you should make use of the AFXTableKeyword and set the column types so that the table’s values are
automatically evaluated correctly.

3.6.7 List type
If you want to allow the user to specify a value in a column by selecting from a list of items, you must
first set the column to be of type LIST. You then create a list and assign it to that column. When the user
clicks on an item in that column, the table will display a noneditable combo box that contains the entries
from the list. The following example illustrates how you can create a combo box within a table cell:

vf = FXVerticalFrame(gb, FRAME_SUNKEN|FRAME_THICK,
0,0,0,0, 0,0,0,0)

table = AFXTable(vf, 4, 2, 4, 2, None, 0,
AFXTABLE_NORMAL|AFXTABLE_EDITABLE)

table.setLeadingRows(1)
table.setLeadingRowLabels('Size\tQuantity')

3–24

Abaqus ID:
Printed on:

TABLE WIDGET

table.showHorizontalGrid(True)
table.showVerticalGrid(True)

listId = table.addList('Small\tMedium\tLarge')
table.setColumnType(0, AFXTable.LIST)
table.setColumnListId(0, listId)

Figure 3–26 A combo box within a table cell.

You can also add list items that contain icons using the appendListItem method of the table.

icon = createGIFIcon('myIcon.gif')
table.appendListItem(listId, 'Extra large', icon)

When you connect a table keyword to a table that contains lists, you must set the column type
of the table keyword appropriately. If the list contains only text, you can set the column type to
AFXTABLE_TYPE_STRING, which sets the value of the keyword to the text of the item selected in the
list. Similarly, if the list contains only icons, you can set the column type to AFXTABLE_TYPE_INT,
which sets the value of the keyword to the index of the item selected in the list. If the list contains both
text and icons, you can use either setting for the column type.

3.6.8 Boolean type
If you want to allow the user to specify a value in a table be either True or False, you must set the type
of the column to be BOOL. The value of a Boolean item is toggled each time the user clicks the item.
By default, a blank icon represents False and a check mark icon represents True. The following example
illustrates how you can include Boolean items in a table:

vf = FXVerticalFrame(gb, FRAME_SUNKEN|FRAME_THICK,
0,0,0,0, 0,0,0,0)

table = AFXTable(vf, 4, 2, 4, 2, None, 0,
AFXTABLE_NORMAL|AFXTABLE_EDITABLE)

table.setLeadingRows(1)
table.setLeadingRowLabels('Nlgeom\tStep')
table.showHorizontalGrid(True)
table.showVerticalGrid(True)

3–25

Abaqus ID:
Printed on:

TABLE WIDGET

table.setColumnType(0, table.BOOL)
table.setColumnWidth(0, 50)
table.setColumnJustify(0, AFXTable.CENTER)

Figure 3–27 Boolean items in a table.

If you do not want to use the default icons, you can set your own true and false icons, as shown in
the following example:

vf = FXVerticalFrame(gb, FRAME_SUNKEN|FRAME_THICK,
0,0,0,0, 0,0,0,0)

table = AFXTable(vf, 4, 2, 4, 2, None, 0,
AFXTABLE_NORMAL|AFXTABLE_EDITABLE)

table.setLeadingRows(1)
table.setLeadingRowLabels('State\tLayer')
table.showHorizontalGrid(True)
table.showVerticalGrid(True)
table.setColumnType(0, table.BOOL)
table.setColumnWidth(0, 50)
table.setColumnJustify(0, AFXTable.CENTER)

from appIcons import lockedData, unlockedData
trueIcon = FXXPMIcon(getAFXApp(), lockedData)
falseIcon = FXXPMIcon(getAFXApp(), unlockedData)
table.setDefaultBoolIcons(trueIcon, falseIcon)

Figure 3–28 Defining your own true and false icons.

3–26

Abaqus ID:
Printed on:

TABLE WIDGET

3.6.9 Icon type
If you want to display an icon in an item, you must set the type of the column to be ICON and assign the
icons to be shown. This type of column is not editable by the user. The following example shows how
you can include an icon in a table cell:

vf = FXVerticalFrame(parent, FRAME_SUNKEN|FRAME_THICK,
0,0,0,0, 0,0,0,0)

table = AFXTable(vf, 4, 2, 4, 2, None, 0,
AFXTABLE_NORMAL|AFXTABLE_EDITABLE)

table.setLeadingRows(1) table.setLeadingRowLabels(' \tStatus')
table.showHorizontalGrid(True)
table.showVerticalGrid(True)
table.setColumnType(0, table.ICON)
table.setColumnWidth(0, 30)
table.setColumnJustify(0, AFXTable.CENTER)

from appIcons import circleData, squareData
circleIcon = FXXPMIcon(getAFXApp(), circleData)
squareIcon = FXXPMIcon(getAFXApp(), squareData)
table.setItemIcon(1, 0, circleIcon)
table.setItemIcon(2, 0, squareIcon)
table.setItemIcon(3, 0, circleIcon)

Figure 3–29 Including icons in table cells.

3.6.10 Color type
If you want to display a color button in a table, you must set the type to COLOR. If the table is editable,
the user can use the color button to change the color via the color selection dialog box. The color button
is a flyout button that can have up to three flyout items, one for a specific color, one for a default color,

3–27

Abaqus ID:
Printed on:

TABLE WIDGET

and one for an “as-is” color. Refer to the Color Code dialog box in Abaqus/CAE to see examples of how
these options may be used. The options are specified using the flags in the following table:

Option flag Effect

COLOR_INCLUDE_COLOR_ONLY Include only the color flyout item.

COLOR_INCLUDE_AS_IS Include the “as–is” (=) flyout item.

COLOR_INCLUDE_DEFAULT Include the default (*) flyout item.

COLOR_INCLUDE_ALL Include all of the flyout items.

The following example shows how you can display color buttons in a table:

vf = FXVerticalFrame(
gb, FRAME_SUNKEN|FRAME_THICK, 0,0,0,0, 0,0,0,0)

table = AFXTable(
vf, 4, 2, 4, 2, None, 0, AFXTABLE_NORMAL|AFXTABLE_EDITABLE)

table.setLeadingRows(1)
table.setLeadingRowLabels('Name\tColor')
table.setColumnType(1,AFXTable.COLOR)
table.setColumnColorOptions(

1, AFXTable.COLOR_INCLUDE_COLOR_ONLY)
table.setItemText(1, 0, 'Part-1')
table.setItemText(2, 0, 'Part-2')
table.setItemText(3, 0, 'Part-3')
table.setItemColor(1,1, '#FF0000')
table.setItemColor(2,1, '#00FF00')
table.setItemColor(3,1, '#0000FF')

Figure 3–30 Including icons in table cells.

3–28

Abaqus ID:
Printed on:

TABLE WIDGET

3.6.11 Popup menu
You can add a popup menu to the table by specifying the appropriate flags using the
setPopupOptions method. The menu will be posted when the user clicks mouse button 3 anywhere
over the table. The following options are supported in the popup menu:

Option flag Effect

POPUP_NONE (default) No popup menu will be displayed.

POPUP_CUT Adds a Cut button to the popup menu.

POPUP_COPY Adds a Copy button to the popup menu.

POPUP_PASTE Adds a Paste button to the popup menu.

POPUP_EDIT POPUP_CUT | POPUP_COPY | POPUP_PASTE

POPUP_INSERT_ROW Adds Insert Row Before/After buttons to the popup
menu.

POPUP_INSERT_COLUMN Adds Insert Column Before/After buttons to the popup
menu.

POPUP_DELETE_ROW Adds Delete Rows button to the popup menu.

POPUP_DELETE_COLUMN Adds Delete Columns button to the popup menu.

POPUP_CLEAR_CONTENTS Adds Clear Contents/Table buttons to the popup menu.

POPUP_MODIFY POPUP_INSERT_ROW | POPUP_
INSERT_COLUMN | POPUP_DELETE_ROW |
POPUP_DELETE_COLUMN |
POPUP_CLEAR_CONTENTS

POPUP_READ_FROM_FILE Adds Read from File button to the popup menu.

Note: Include POPUP_INSERT_ROW with
POPUP_READ_FROM_FILE to allow automatic
expansion of the table for data files with more lines than
the current table definition.

POPUP_WRITE_TO_FILE Adds Write to File button to the popup menu.

POPUP_ALL POPUP_EDIT | POPUP_MODIFY | POPUP_READ

You can also add a custom button to the popup menu by using the table’s appendClientPopupItem
method, as shown in Figure 3–31. The following example shows how you can enable various popup
menu options:

3–29

Abaqus ID:
Printed on:

TABLE WIDGET

Figure 3–31 Popup menu options.

vf = FXVerticalFrame(parent, FRAME_SUNKEN|FRAME_THICK,
0,0,0,0, 0,0,0,0)

table = AFXTable(vf, 4, 3, 4, 3, None, 0,
AFXTABLE_NORMAL|AFXTABLE_EDITABLE)

table.setLeadingColumns(1)
table.setLeadingRows(1)
table.setLeadingRowLabels('X\tY')

table.showHorizontalGrid(True)
table.showVerticalGrid(True)

table.setColumnWidth(0, 30)

Center all columns
table.setColumnJustify(-1, table.CENTER)

table.setPopupOptions(
AFXTable.POPUP_CUT|AFXTable.POPUP_COPY

|AFXTable.POPUP_PASTE
|AFXTable.POPUP_INSERT_ROW
|AFXTable.POPUP_DELETE_ROW
|AFXTable.POPUP_CLEAR_CONTENTS

3–30

Abaqus ID:
Printed on:

TABLE WIDGET

|AFXTable.POPUP_READ_FROM_FILE
)
table.appendClientPopupItem('My Button', None, self,

self.ID_MY_BUTTON)
FXMAPFUNC(self, SEL_COMMAND, self.ID_MY_BUTTON, MyDB.onCmdMyBtn)

3.6.12 Colors
Items in a table that display characters have two sets of colors—the normal color and the selected color.
In addition, each item has a background color and a text color. To change these colors, the table widget
provides the following controls:

• Item text color
• Item background color
• Selected item text color
• Selected item background color
• Item color (color button) (The color button is described in “Color buttons,” Section 3.1.10.)

You can control the text color of items that display characters using the setItemTextColor
method. Items that display characters include strings, numbers, and lists. You can control the text color
of these items when they are selected by using the setSelTextColor method. You can control
the background color of any item by using the setItemBackColor method. You can control the
background color of any item when it is selected by using the setSelBackColor method.

If you do not want the colors to change when the user selects an item, you can set the colors used
for items that are selected to be the same as the colors used for items that are not selected. This approach
is shown in the following example:

itemColor = table.getItemBackColor(1,1)
table.setSelBackColor(itemColor)
itemTextColor = table.getItemTextColor(1,1)
table.setSelTextColor(itemTextColor)

You can set colors using the color name or by specifying RGB values using the FXRGB function.
(For a list of valid color names and their corresponding RGB values, see Appendix B, “Colors and RGB
values.”) Both methods are illustrated in the following example:

vf = FXVerticalFrame(parent, FRAME_SUNKEN|FRAME_THICK,
0,0,0,0, 0,0,0,0)

table = AFXTable(vf, 4, 2, 4, 2, None, 0,
AFXTABLE_NORMAL|AFXTABLE_EDITABLE)

table.setLeadingRows(1)
table.setLeadingRowLabels('Name\tDescription')

3–31

Abaqus ID:
Printed on:

TABLE WIDGET

table.showHorizontalGrid(True)
table.showVerticalGrid(True)

table.setItemTextColor(1,0, 'Blue')
table.setItemTextColor(1,1, FXRGB(0, 0, 255))

table.setItemBackColor(3,0, 'Pink')
table.setItemBackColor(3,1, FXRGB(255, 192, 203))

Figure 3–32 Setting colors for table items.

3.6.13 Sorting
You can set a column in a table to be sortable. If a column is set to be sortable and the user clicks on its
heading, a graphic will be displayed in the heading that shows the order of the sort. You must write the
code that performs the actual sorting in the table—the table itself provides only the graphical feedback
in the heading cell. For example:

class MyDB(AFXDataDialog):

def __init(self):

...

Handle clicks in the table.
FXMAPFUNC(self, SEL_CLICKED, self.ID_TABLE,

MyDB.onClickTable)
...

Create a table.
vf = FXVerticalFrame(

parent, FRAME_SUNKEN|FRAME_THICK, 0,0,0,0, 0,0,0,0)
self.sortTable = AFXTable(vf, 4, 3, 4, 3, self,

self.ID_TABLE, AFXTABLE_NORMAL|AFXTABLE_EDITABLE)

3–32

Abaqus ID:
Printed on:

TABLE WIDGET

self.sortTable.setLeadingRows(1)
self.sortTable.setLeadingRowLabels('Name\tX\tY')
self.sortTable.setColumnSortable(1, True)
self.sortTable.setColumnSortable(2, True)
...

def onClickTable(self, sender, sel, ptr):

status, x, y, buttons = self.sortTable.getCursorPosition()
column = self.sortTable.getColumnAtX(x)
row = self.sortTable.getRowAtY(y)

Ignore clicks on table headers.
if row != 0 or column == 0:

return

values = []
index = 1
for row in range(1, self.sortTable.getNumRows()):

values.append((self.sortTable.getItemFloatValue(
row, column), index))

index += 1

values.sort()
if self.sortTable.getColumnSortOrder(column) == \

AFXTable.SORT_ASCENDING:
values.reverse()

items = []
for value, index in values:

name = self.sortTable.getItemValue(index, 0)
xValue = self.sortTable.getItemValue(index, 1)
yValue = self.sortTable.getItemValue(index, 2)
items.append((name, xValue, yValue))

row = 1
for name, xValue, yValue in items:

self.sortTable.setItemValue(row, 0, name)
self.sortTable.setItemValue(row, 1, xValue)
self.sortTable.setItemValue(row, 2, yValue)
row += 1

3–33

Abaqus ID:
Printed on:

MISCELLANEOUS WIDGETS

Figure 3–33 Sorting table items.

3.7 Miscellaneous widgets

This section describes a set of miscellaneous widgets in the Abaqus GUI Toolkit that you can use in your
applications. The following topics are covered:

• “Separators,” Section 3.7.1
• “Notes and warnings,” Section 3.7.2
• “Progress bar,” Section 3.7.3

3.7.1 Separators

The FXHorizontalSeparator widget and the FXVerticalSeparator widget provide a
visual separator to allow separating elements in a GUI. The Abaqus GUI Toolkit also includes a
FXMenuSeparator widget that you can use to separate items in a menu pane. For example,

FXLabel(parent, 'This is a label above an FXHorizontalSeparator')
FXHorizontalSeparator(parent)
FXLabel(parent, 'This is a label below an FXHorizontalSeparator')

Figure 3–34 An example of a horizontal separator from FXHorizontalSeparator.

3–34

Abaqus ID:
Printed on:

MISCELLANEOUS WIDGETS

3.7.2 Notes and warnings
The AFXNotewidget provides a convenient way to display notes or warnings in a dialog box. AFXNote
displays either the word “Note” or the word “Warning” in a bold font. AFXNote also aligns messages
that contain more than one line. For example,

AFXNote(parent, 'This is an AFXNote information note\n'
'that wraps on two lines.')

AFXNote(parent, 'This is an AFXNote warning note!', NOTE_WARNING)

Figure 3–35 An example of a note and a warning from AFXNote.

3.7.3 Progress bar
The AFXProgressBar widget provides feedback during a process that takes a long time to complete.
For example,

pb = AFXProgressBar(parent, keyword, tgt,
LAYOUT_FIX_HEIGHT|LAYOUT_FIX_WIDTH|
FRAME_SUNKEN|FRAME_THICK|AFXPROGRESSBAR_SCANNER,
0, 0, 200, 25)

If you want to control the display of the progress bar you can use the percentage or iterator mode and
call setProgress with the appropriate value.

from abaqusGui import *
class MyDB(AFXDataDialog):

ID_START = AFXDataDialog.ID_LAST
def __init__(self, form):

AFXDataDialog.__init__(self, form, 'My Dialog',
self.OK|self.CANCEL, DECOR_RESIZE|DIALOG_ACTIONS_SEPARATOR)

FXButton(self, 'Start Something', None, self, self.ID_START)
FXMAPFUNC(self, SEL_COMMAND, self.ID_START, MyDB.onDoSomething)
self.scannerDB = ScannerDB(self)

3–35

Abaqus ID:
Printed on:

THE CREATE METHOD

def onDoSomething(self, sender, sel, ptr):
self.scannerDB.create()
self.scannerDB.showModal(self)
getAFXApp().repaint()
files = [

'file_1.txt',
'file_2.txt',
'file_3.txt',
'file_4.txt',

]
self.scannerDB.setTotal(len(files))
for i in range(1, len(files)+1):

self.scannerDB.setProgress(i)
Do something with files[i]

self.scannerDB.hide()
class ScannerDB(AFXDialog):

def __init__(self, owner):
AFXDialog.__init__(self, owner, 'Work in Progress',

0, 0, DIALOG_ACTIONS_NONE)
self.scanner = AFXProgressBar(self, None, 0,

LAYOUT_FIX_WIDTH|LAYOUT_FIX_HEIGHT|
FRAME_SUNKEN|FRAME_THICK|AFXPROGRESSBAR_ITERATOR,
0, 0, 200, 22)

def setTotal(self, total):
self.scanner.setTotal(total)

def setProgress(self, progress):
self.scanner.setProgress(progress)

Note: The setProgress method has no effect on a progress bar that uses the scanner mode.

The progress bar has several different modes, as shown in Figure 3–36.

3.8 The create method

Most widgets in the Abaqus GUI Toolkit employ a two-stage creation process. In the first stage the
widget constructor builds the data structures for the widget. In the second stage the toolkit calls the
widget’s create method. The create method constructs all the windows required by the widget so
that the widget can be displayed on the screen.

In most cases the application startup script first calls the constructors of all the widgets required to
build the initial structure of an application by constructing the main window. The script then calls the

3–36

Abaqus ID:
Printed on:

WIDGETS AND FONTS

Figure 3–36 Three modes of the progress bar widget.

application object’s createmethod. This call traverses the entire widget hierarchy calling the create
method of each widget. For more information and an example script, see “Startup script,” Section 11.2.

If you create widgets after the startup script has called the application’s create method, the
create method must be called on those new widgets; otherwise, they will not be visible on the screen.

If your dialog box is posted by a form or by a procedure, the infrastructure calls the create()
method on the dialog box. However, if you post a dialog box yourself, you must call the create()
method on the dialog box before you call its show() method.

Similarly, if you construct icons that are used after a widget has been created, you must call the
create() method on those icons before using them in a widget. For example, if you want to change
a label’s icon after it has already been shown in a dialog box, you must do the following:

1. Construct the new icon.

2. Call the new icon’s create() method.

3. Pass the icon to the label using the label’s setIcon() method.

3.9 Widgets and fonts

When the user starts an application, it sets the default font to be used for all widgets. On Windows
platforms the application obtains the default font from the desktop settings. On Linux platforms the
default font is Helvetica.

The application can issue a command to change its default font. After the command is issued, all
widgets created by the application use the new font. Alternatively, you can change an individual widget’s
font by using the setFont method that is available for many widgets.

You use the getAFXFont method to obtain the current font setting for a widget. Possible fonts
are:

• FONT_PROPORTIONAL
• FONT_MONOSPACE

3–37

Abaqus ID:
Printed on:

WIDGETS AND FONTS

• FONT_BOLD
• FONT_ITALIC
• FONT_SMALL
The following example shows how you can change the default font for all widgets and the font for

a particular widget:

Get the current default font.
normalFont = getAFXApp().getNormalFont()

Set the font to bold for subsequently created widgets.
getAFXApp().setNormalFont(getAFXFont(FONT_BOLD))
FXLabel(self, 'Bold font')

Restore the default font.
getAFXApp().setNormalFont(normalFont)

Set the font of a widget after it is created.
l = FXLabel(self, 'Sample text')
l.setFont(getAFXFont(FONT_MONOSPACE))

3–38

Abaqus ID:
Printed on:

AN OVERVIEW OF LAYOUT MANAGERS

4. Layout managers

This section describes how to use the various layout managers in the Abaqus GUI Toolkit to arrange
widgets in a dialog box. The following topics are covered:

• “An overview of layout managers,” Section 4.1
• “Padding and spacing,” Section 4.2
• “Horizontal and vertical frames,” Section 4.3
• “Vertical alignment for composite children,” Section 4.4
• “General-purpose layout managers,” Section 4.5
• “Row and column layout manager,” Section 4.6
• “Resizable regions,” Section 4.7
• “Rotating regions,” Section 4.8
• “Tab books,” Section 4.9
• “Layout hints,” Section 4.10
• “Layout examples,” Section 4.11
• “Tips for specifying layout hints,” Section 4.12

4.1 An overview of layout managers

A layout manager places its children in a certain arrangement in its interior. Layout managers use a
combination of layout hints and packing styles to determine how to place and size their children. Layout
managers in the Abaqus GUI Toolkit calculate relative sizes and relative positions, as opposed to absolute
coordinates. This relative approach accounts automatically for changes such as different font sizes and
window resizing.

The following layout managers are available in the Abaqus GUI Toolkit:

FXHorizontalFrame

Arranges widgets horizontally. For more information, see “Horizontal and vertical frames,”
Section 4.3.

FXVerticalFrame

Arranges widgets vertically. For more information, see “Horizontal and vertical frames,”
Section 4.3.

AFXVerticalAligner

Vertically aligns the first child of its children. For more information, see “Vertical alignment for
composite children,” Section 4.4.

4–1

Abaqus ID:
Printed on:

PADDING AND SPACING

FXPacker

Arranges widgets in a general manner. For more information, see “General-purpose layout
managers,” Section 4.5.

AFXDialog

Same capabilities as FXPacker. For more information, see “General-purpose layout managers,”
Section 4.5.

FXGroupBox

Same capabilities as FXPacker but allows a titled border. For more information, see “General-
purpose layout managers,” Section 4.5.

FXMatrix

Arranges widgets in rows and columns. For more information, see “Row and column layout
manager,” Section 4.6.

FXSplitter

Splits an area vertically or horizontally, and allows you to resize the areas. For more information,
see “Resizable regions,” Section 4.7.

FXSwitcher

Swaps children on top of each other (rotating regions). For more information, see “Rotating
regions,” Section 4.8.

FXTabBook

Displays one tab, or one page, of widgets at a time. The user selects the tab to view by clicking a
tab button. For more information, see “Tab books,” Section 4.9.

4.2 Padding and spacing

Layout managers (and most widgets) provide some default padding so that widgets are spaced apart
from each other. These values are commonly found near the end of the widget’s list of arguments. For
example,

FXPacker(…, pl, pr, pt, pb, …)

In general, you should accept the default values for padding. However, if you have nested layout
managers, you should set the padding values to zero.

Layout managers also provide spacing between their children. These values are commonly found
at the end of the widget’s list of arguments. For example,

FXPacker(…, hs, vs)

4–2

Abaqus ID:
Printed on:

VERTICAL ALIGNMENT FOR COMPOSITE CHILDREN

In general, you should accept the default values for spacing.
Some “compound” widgets, such as AFXTextField, AFXComboBox, and AFXSpinner, have

two padding values—one for the padding of the internal text field widget and a second for the entire
widget that includes a label. You set the padding for the internal text field widget by passing padding
values into the widget constructor. You set the padding for the entire widget by calling one of the padding
methods on the widget; for example, setPadLeft.

4.3 Horizontal and vertical frames

The FXHorizontalFrame and FXVerticalFrame widgets arrange their children in rows or
columns, respectively. For example,

vf = FXVerticalFrame(parent)
FXButton(vf, 'Button 1')
FXButton(vf, 'Button 2')
FXButton(vf, 'Button 3')

Figure 4–1 An example of a vertical frame from FXVerticalFrame.

4.4 Vertical alignment for composite children

The AFXVerticalAligner widget is designed to align children that contain multiple children.
AFXVerticalAligner does the following:

1. Finds the maximum width of the first child of each of its children.

2. Sets the width of all the first children to the maximum width.

For example,

va = AFXVerticalAligner(parent)
AFXTextField(va, 16, 'Name:')
AFXTextField(va, 16, 'Address:')
AFXTextField(va, 16, 'Phone Number:')

4–3

Abaqus ID:
Printed on:

GENERAL-PURPOSE LAYOUT MANAGERS

Figure 4–2 An example of vertical alignment from AFXVerticalAligner.

4.5 General-purpose layout managers

The Abaqus GUI Toolkit includes three general-purpose layout managers that have similar layout
capabilities:

FXPacker

FXPacker is a general-purpose layout manager.

AFXDialog

AFXDialog provides similar capabilities to FXPacker. As a result, you do not need to provide
a top-level layout manager as the first child in a dialog box; you can use the layout capabilities of
the dialog box instead.

FXGroupBox

FXGroupBox provides the same capabilities as FXPacker. In addition, FXGroupBox can
display a labeled border around its children. Abaqus/CAE uses the FRAME_GROOVE flag to
produce a thin border around the children of the group box.

For example,

gb = FXGroupBox(parent, 'Render Style', FRAME_GROOVE)
FXRadioButton(gb, 'Wireframe')
FXRadioButton(gb, 'Filled')
FXRadioButton(gb, 'Shaded')

4–4

Abaqus ID:
Printed on:

RESIZABLE REGIONS

Figure 4–3 An example of a group box with a labeled border from FXGroupBox.

4.6 Row and column layout manager

The FXMatrix widget arranges its children in rows and columns. You can perform the layout
row-wise using the default value of the opts argument (MATRIX_BY_ROWS) or column-wise by
setting opts=MATRIX_BY_COLUMNS. If you specify opts=MATRIX_BY_ROWS, the matrix will
create the specified number of rows and as many columns as are needed to accommodate all its children.
Conversely, if you specify opts=MATRIX_BY_COLUMNS, the matrix will create the specified number
of columns and as many rows as are needed to accommodate all its children.

For example, using the default opts=MATRIX_BY_ROWS setting,

m = FXMatrix(parent, 2)
FXButton(m, 'Button 1')
FXButton(m, 'Button 2')
FXButton(m, 'Button 3')
FXButton(m, 'Button 4')
FXButton(m, 'Button 5')
FXButton(m, 'Button 6')

Figure 4–4 An example of a matrix with two rows from FXMatrix.

4.7 Resizable regions

The FXSplitter widget splits an area vertically or horizontally. The user can drag the cursor on the
region between the areas and resize the areas. For example,

4–5

Abaqus ID:
Printed on:

ROTATING REGIONS

sp = FXSplitter(parent,
LAYOUT_FILL_X|LAYOUT_FIX_HEIGHT|SPLITTER_VERTICAL,
0,0,0,100)

hf1 = FXHorizontalFrame(sp, FRAME_SUNKEN|FRAME_THICK)
FXLabel(hf1, 'This is area 1')
hf2 = FXHorizontalFrame(sp, FRAME_SUNKEN|FRAME_THICK)
FXLabel(hf2, 'This is area 2')

Figure 4–5 An example of resizable areas laid out vertically by FXSplitter.

4.8 Rotating regions

The FXSwitcher widget manages children that are positioned on top of each other. FXSwitcher
allows you to select which child should be shown by either sending it a message or calling
its setCurrent method. When sending a message, you must set the message ID to
FXSwitcher.ID_OPEN_FIRST for the first child. You must then increment the message ID from
that value for the subsequent children, as shown in the following example. For more information on
messages, see “Targets and messages,” Section 6.5.4. To use the setCurrent method, you should
provide the zero-based index of the child that you want to display. For example, to display the first
child, you should call the setCurrent method with an index value of zero.

For example,

sw = FXSwitcher(parent)
FXRadioButton(hf, 'Option 1', sw, FXSwitcher.ID_OPEN_FIRST)
FXRadioButton(hf, 'Option 2', sw, FXSwitcher.ID_OPEN_FIRST+1)
hf1 = FXHorizontalFrame(sw)
FXButton(hf1, 'Button 1')
FXButton(hf1, 'Button 2')
hf2 = FXHorizontalFrame(sw)
FXButton(hf2, 'Button 3')
FXButton(hf2, 'Button 4')

4–6

Abaqus ID:
Printed on:

TAB BOOKS

Figure 4–6 An example of a rotating region from FXSwitcher.

4.9 Tab books

TheFXTabBookwidget uses “tab items” to control the display of its “pages” one at a time. FXTabBook
expects that its odd-numbered children are FXTabItems and its even-numbered children are some type
of layout manager. The layout manager contains whatever widgets are to be displayed in that page.
Clicking a tab item will show the layout manager (and all its children) associated with that tab while
hiding all the other layout managers. Typically, a horizontal or vertical frame is used for the layout
manager, and its frame options are set to FRAME_RAISED | FRAME_THICK to provide a standard
border.

You can nest tab books to provide tabs within tabs, as shown in the following example:

tabBook1 = FXTabBook(self, None, 0, LAYOUT_FILL_X)
FXTabItem(tabBook1, 'Tab Item 1')
tab1Frame = FXHorizontalFrame(tabBook1,

FRAME_RAISED|FRAME_SUNKEN)
FXLabel(tab1Frame, '

This is the region controlled by Tab Item 1.')
FXTabItem(tabBook1, 'Tab Item 2')
tab2Frame = FXHorizontalFrame(tabBook1, FRAME_RAISED|FRAME_SUNKEN)

tabBook2 = FXTabBook(tab2Frame, None, 0,
TABBOOK_LEFTTABS|LAYOUT_FILL_X)

FXTabItem(tabBook2, 'Subtab Item 1', None, TAB_LEFT)
subTab1Frame = FXHorizontalFrame(tabBook2,

FRAME_RAISED|FRAME_SUNKEN)

4–7

Abaqus ID:
Printed on:

TAB BOOKS

AFXNote(subTab1Frame,
'This is a note\nin sub-tab item 1\nthat extends\n' \
'over several\nlines.')

FXTabItem(tabBook2, 'Subtab Item 2', None, TAB_LEFT)
subTab2Frame = FXHorizontalFrame(tabBook2,

FRAME_RAISED|FRAME_SUNKEN)

Figure 4–7 shows an example of nested tab books.

Figure 4–7 An example of two subtab pages.

4–8

Abaqus ID:
Printed on:

LAYOUT HINTS

4.10 Layout hints

The FXPacker, FXTopWindow, and FXGroupBox widgets accept the following layout hints in their
children:

LAYOUT_SIDE_TOP

Attaches a widget to the top side of the cavity. LAYOUT_SIDE_TOP is the default layout hint.

LAYOUT_SIDE_BOTTOM

Attaches a widget to the bottom side of the cavity.

LAYOUT_SIDE_LEFT

Attaches a widget to the left side of the cavity.

LAYOUT_SIDE_RIGHT

Attaches a widget to the right side of the cavity.

You should specify only one of the LAYOUT_SIDE_* hints per child. The top and bottom hints
effectively reduce the height of the available space remaining to place other children. The left and right
hints effectively reduce the width of the available space remaining to place other children.

All layout managers support the following layout hints:

• LAYOUT_LEFT (default) and LAYOUT_RIGHT. The layout manager places the widget on the
left or right side of the space remaining in the container.

• LAYOUT_TOP (default) and LAYOUT_BOTTOM. The layout manager places the widget on the
top or bottom side of the space remaining in the container.

• LAYOUT_CENTER_X and LAYOUT_CENTER_Y. The layout manager centers the widget in the
X- or Y-direction in the parent. The manager adds extra spacing around the widget to place it at
the center of the space available to it. The widget’s size will be its default size unless you specify
LAYOUT_FIX_WIDTH or LAYOUT_FIX_HEIGHT.

• LAYOUT_FILL_X and LAYOUT_FILL_Y. You can specify either none, one, or both of these
layout hints. LAYOUT_FILL_X causes the parent layout manager to stretch or to shrink the
widget to accomodate the available space. If you place more than one child with this option side
by side, the manager subdivides the available space proportionally to the children’s default size.
LAYOUT_FILL_Y has the identical effect in the vertical direction.

FXPacker, FXTopWindow, and FXGroupBox must use LAYOUT_LEFT and LAYOUT_RIGHT
with LAYOUT_SIDE_TOP and LAYOUT_SIDE_BOTTOM. The Abaqus GUI Toolkit ignores
hints if they do not make sense; for example, FXHorizontalFrame ignores LAYOUT_TOP and
LAYOUT_BOTTOM. Similar rules apply for the other hints.

4–9

Abaqus ID:
Printed on:

LAYOUT EXAMPLES

The majority of widgets in the Abaqus GUI Toolkit have width and height arguments in their
constructors. In most cases you can accept the default value of zero for these arguments, which allows
the application to determine the proper size of the widget. However, in some cases you will need to
set specific values for the width and height of a widget. To set the width and height, you must pass the
LAYOUT_FIX_WIDTH and LAYOUT_FIX_HEIGHT flags to the options argument of the widget. If
you do not pass these flags to the options argument, the toolkit will ignore the values that you specified
for the width and height.

Layout hints are described in detail in Appendix C, “Layout hints.”

4.11 Layout examples

The following examples create three buttons, one at a time, using the default layout hints. As each button
is created, the figures show the effect on the space remaining in the layout cavity.

Example 1

The first example starts by creating a single button on the left side of the cavity. The default value
for the vertical position is LAYOUT_TOP, so the example places the button on the left side and at
the top of the available space.

gb = FXGroupBox(parent, '')
FXButton(gb, 'Button 1', opts=LAYOUT_SIDE_LEFT|BUTTON_NORMAL)

Figure 4–8 Creating a button on the left side and at the top of the layout cavity.

The following statement adds a second button on the left side at the top of the available space:

FXButton(gb, 'Button 2', opts=LAYOUT_SIDE_LEFT|BUTTON_NORMAL)

4–10

Abaqus ID:
Printed on:

LAYOUT EXAMPLES

Figure 4–9 Adding a second button on the left side at the top of the layout cavity.

The following statement adds a third button on the left side at the top of the available space:

FXButton(gb, 'Button 3',
opts=LAYOUT_SIDE_LEFT|BUTTON_NORMAL)

Figure 4–10 Adding a third button on the left side at the top of the layout cavity.

Figure 4–11 shows the final configuration of the three buttons.

Figure 4–11 The final configuration of the buttons.

Example 2

The second example illustrates how you can use nondefault layout hints. The example starts by
using the default hints to position a button on top of the available space and on the left.

gb = FXGroupBox(p,'')
FXButton(gb,'Button 1')

4–11

Abaqus ID:
Printed on:

LAYOUT EXAMPLES

Figure 4–12 Creating a button on the left side and at the top of the layout cavity.

The example then positions a second button on the right side on the bottom of the layout cavity.

FXButton(gb, 'Button 2',
opts=LAYOUT_SIDE_BOTTOM|LAYOUT_RIGHT|BUTTON_NORMAL)

Figure 4–13 Adding a second button on the right side at the bottom of the layout cavity.

Finally, the example places a third button on the bottom of the available space and centered in the
X-direction.

FXButton(gb, 'Button 3',
opts=LAYOUT_SIDE_BOTTOM|LAYOUT_CENTER_X|BUTTON_NORMAL)

4–12

Abaqus ID:
Printed on:

TIPS FOR SPECIFYING LAYOUT HINTS

Figure 4–14 Adding a third button in the center at the bottom of the layout cavity.

Figure 4–15 shows the final configuration of the three buttons.

Figure 4–15 The final configuration of the three buttons.

4.12 Tips for specifying layout hints

• Do not over specify layout hints. In many cases the default values are what you want, and you do
not need to specify the hints.

• Think in terms of simple rows and columns, and use horizontal or vertical frames whenever possible.
• To avoid building up excessive padding, set the padding to zero in nested layout managers.
• Layout hints are described in detail in Appendix C, “Layout hints.”

4–13

Abaqus ID:
Printed on:

MODAL VERSUS MODELESS

5. Dialog boxes

This section describes the dialog boxes that you can create using the Abaqus GUI Toolkit. The following
topics are covered:

• “An overview of dialog boxes,” Section 5.1
• “Modal versus modeless,” Section 5.2
• “Showing and hiding dialog boxes,” Section 5.3
• “Message dialog boxes,” Section 5.4
• “Custom dialog boxes,” Section 5.5
• “Data dialog boxes,” Section 5.6
• “Common dialog boxes,” Section 5.7

5.1 An overview of dialog boxes

The following general types of dialog boxes are available in the Abaqus GUI Toolkit:

Message dialog boxes

Message dialog boxes allow you to post error, warning, or informational messages.

Custom dialog boxes

Custom dialog boxes allow you to build any custom interface. However, you must supply the
infrastructure needed to make the dialog box behave as required.

Data dialog boxes

Data dialog boxes provide support for dialog boxes in which users enter data. Data dialog boxes
are designed to supply user inputs to forms, which automatically issue commands. For more
information, see “Form modes,” Section 7.3.

Common dialog boxes

Common dialog boxes are dialog boxes that provide standard functionality commonly found in
many applications. The File Selection dialog box is a typical common dialog box.

These dialog boxes, alongwith other details related to dialog box construction and behavior, are described
in this chapter.

5.2 Modal versus modeless

A dialog box can be either modal or modeless.

5–1

Abaqus ID:
Printed on:

SHOWING AND HIDING DIALOG BOXES

Modal

A modal dialog box prevents interaction with the rest of the application until the user dismisses the
dialog box.

Modeless

A modeless dialog box allows the user to interact with other parts of the GUI while the dialog box
is posted. In Abaqus/CAE all secondary dialog boxes except for tips should be modal dialog boxes.

A dialog box itself is not defined as modal or modeless—the behavior is obtained from the method used
to post the dialog box.

For dialog boxes posted by forms, you can set the modal behavior by calling the form’s setModal
method and providing an argument of either True or False. If you call setModal with True as its
argument, the form will post the next dialog box modally. You can call the setModal method several
times within one form if you need to change the modal behavior between the various dialog boxes
managed by the form.

For dialog boxes that you post yourself, you can use the showModal method instead of the show
method described in the next section. “File/Directory selector,” Section 5.7.1 includes an example that
uses the showModal method.

5.3 Showing and hiding dialog boxes

Dialog boxes have show and hide methods that post or unpost the dialog box from the screen. In most
cases you do not need to call these methods because the mode infrastructure calls them for you. However,
you may want to write your own show and hide methods to perform some special processing that will
be executed just before your application posts or unposts the dialog box. For example, you can register
and unregister queries inside the show and hide methods. You must call the base class versions of the
show and hidemethods, or the methods will not behave as expected. For example, in your dialog class
code you could add the following lines:

def show(self):

Do some special processing here.
...

Call base class method.
AFXDataDialog.show(self)

def hide(self):

Do some special processing here.
...

5–2

Abaqus ID:
Printed on:

MESSAGE DIALOG BOXES

Call base class method.
AFXDataDialog.hide(self)

5.4 Message dialog boxes

The AFXMessageDialog class extends the FXMessageDialog class by enforcing certain
characteristics of the dialog box; for example, the window title and message symbol. These
characteristics make message dialog boxes in Abaqus/CAE consistent and easy to use. This section
describes the message dialog boxes that you can create with the Abaqus GUI Toolkit. The following
topics are covered:

• “Error dialog boxes,” Section 5.4.1
• “Warning dialog boxes,” Section 5.4.2
• “Information dialog boxes,” Section 5.4.3
• “Specialized message dialog boxes,” Section 5.4.4

5.4.1 Error dialog boxes
You post error dialog boxes in response to a failure condition that the application cannot resolve.

Error dialog boxes have the following characteristics:

• The application name is displayed in their title bar.
• An error symbol is displayed on the left side of the dialog box.
• The action area contains only a Dismiss button.

• They are modal.
For example:

mainWindow = getAFXApp().getAFXMainWindow()
showAFXErrorDialog(mainWindow, 'An invalid value was supplied.')

Figure 5–1 An example of an error dialog box from showAFXErrorDialog.

5–3

Abaqus ID:
Printed on:

MESSAGE DIALOG BOXES

5.4.2 Warning dialog boxes
You post warning dialog boxes in response to a condition that the application needs user assistance to
resolve.

Warning dialog boxes have the following characteristics:

• The application name is displayed in their title bar.
• A warning symbol is displayed on the left side of the dialog box.
• The action area may contain Yes, No, and Cancel buttons.

• They are modal.
To find out which button in the warning dialog box was pressed by the user, you must pass the

warning dialog box a target and a selector and you must create a message map entry in the form
to handle that message. In your message handler you can query the warning dialog box using the
getPressedButtonId method. The following examples illustrate how to create a warning dialog
box:

You must define an ID in the form class:

from abaqusGui import *
class MyForm(AFXForm):

[
ID_WARNING,

] = range(AFXForm.ID_LAST, AFXForm.ID_LAST+1)

def __init__(self, owner):

Construct the base class.
#
AFXForm.__init__(self, owner)

FXMAPFUNC(self, SEL_COMMAND, self.ID_WARNING,
MyForm.onCmdWarning)

...

def doCustomChecks(self):

if <someCondition>:
showAFXWarningDialog(self.getCurrentDialog(),

'Save changes made in the dialog?',
AFXDialog.YES | AFXDialog.NO,

5–4

Abaqus ID:
Printed on:

MESSAGE DIALOG BOXES

self, self.ID_WARNING)
return False

return True

def onCmdWarning(self, sender, sel, ptr):

if sender.getPressedButtonId() == \
AFXDialog.ID_CLICKED_YES:

self.issueCommands()
elif sender.getPressedButtonId() == \

AFXDialog.ID_CLICKED_NO:
self.deactivate()

Figure 5–2 An example of a warning dialog box from showAFXWarningDialog.

There are two other variations of warning dialog boxes:

• showAFXDismissableWarningDialog

• showAFXItemsWarningDialog

The dialog box created by showAFXDismissableWarningDialog contains a check button that
allows the user to specify whether the application should continue to post the warning dialog box each
time the warning occurs. You can check the state of the button by calling the getCheckButtonState
method of the warning dialog.

The dialog box created by showAFXItemsWarningDialog contains a scrolled list of items to
be displayed to the user. The list prevents the dialog box from becoming too tall when it is displaying a
long list of items.

5.4.3 Information dialog boxes
You post information dialog boxes to provide an explanatory message. Information dialog boxes have
the following characteristics:

• The application name is displayed in their title bar.

5–5

Abaqus ID:
Printed on:

CUSTOM DIALOG BOXES

• An information symbol is displayed on the left side of the dialog box.
• The action area contains only a Dismiss button.

• They are modal.
For example,

mainWindow = getAFXApp().getAFXMainWindow()
showAFXInformationDialog(mainWindow,

'This is an information dialog.')

Figure 5–3 An example of an information dialog box from showAFXInformationDialog.

5.4.4 Specialized message dialog boxes
If you need more flexibility than the standard message dialog boxes, you must derive a new dialog box
from AFXDialog and provide the specialized handling. For more information, see “Custom dialog
boxes,” Section 5.5.

5.5 Custom dialog boxes

AFXDialog is the base class for the other dialog box classes in the toolkit. If none of the other dialog
box classes suit your needs, you must derive your dialog box from AFXDialog and provide most of
the dialog processing yourself. This section describes how you can use AFXDialog to create custom
dialog boxes. The following topics are covered:

• “An overview of custom dialog boxes,” Section 5.5.1
• “Constructors,” Section 5.5.2
• “Sizing and location,” Section 5.5.3
• “Action area,” Section 5.5.4
• “Custom action area button names,” Section 5.5.5
• “Action button handling,” Section 5.5.6

5–6

Abaqus ID:
Printed on:

CUSTOM DIALOG BOXES

5.5.1 An overview of custom dialog boxes
AFXDialog is the base class for the other dialog box classes in the toolkit. If none of the other dialog
box classes suit your needs, you must derive your dialog box from AFXDialog and provide most of the
dialog box processing yourself.

The AFXDialog class extends the FXDialog class by providing the following features:

• Button flags that allow the automatic construction of action area buttons.
• Option flags that control the placement of the action area. Option flags also determine whether to
include a separator between the action area and the rest of the dialog box.

• Message IDs for the various action area commit semantics.
• Methods to add action area buttons manually.
• Automatic handling of the No, Cancel, and Dismiss buttons. Automatic handling is also provided
for the Close (X) button on the right hand side of the dialog box’s title bar.

• Automatic destruction of the dialog box after it is unposted.
See “Action area,” Section 5.5.4, for more details.

5.5.2 Constructors
There are three prototypes of the AFXDialog constructor. The difference between the three prototypes
is the occluding behavior of the dialog box, as illustrated in the following examples:

• The following statement creates a dialog box that always occludes the main window when
overlapping with the main window:

AFXDialog(title, actionButtonIds=0,
opts=DIALOG_NORMAL, x = 0, y = 0, w = 0, h = 0)

• The following statement creates a dialog box that always occludes its owner widget (usually a dialog
box) when overlapping with the widget:

AFXDialog(owner, title, actionButtonIds=0,
opts=DIALOG_NORMAL, x = 0, y = 0, w = 0, h = 0)

• The following statement creates a dialog box that can be occluded by any other windows in the
application:

AFXDialog(app, title, actionButtonIds=0,
opts = DIALOG_NORMAL, x = 0, y = 0, w = 0, h = 0)

When you construct a dialog box, you will start by deriving from the AFXDialog class. The first
thing you should do in the constructor body is call the base class constructor to properly initialize the
dialog. Then, you would build the contents of your dialog by adding widgets. For example:

5–7

Abaqus ID:
Printed on:

CUSTOM DIALOG BOXES

class MyDB(AFXDialog):

My constructor
def __init__(self):

Call base class constructor
AFXDialog.__init__(self, 'My Dialog', self.DISMISS)

Add widgets next...

5.5.3 Sizing and location
By default, the user cannot resize a dialog box. However, if a dialog box contains text fields or lists that
can be stretched to show more entries, the user should be allowed to resize the dialog box. Resizing can
be allowed by specifying the DECOR_RESIZE flag in the dialog box constructor.

Note: Dialog boxes created by AFXDialog do not support minimizing and maximizing; they ignore
these flags if they are included in the dialog box constructor.

You should never specify the size and location of the dialog box in its constructor. The
Abaqus GUI Toolkit will place the dialog box on the screen and determine its proper size.

5.5.4 Action area
The action area of a dialog box contains buttons, such as OK and Cancel. These buttons allow the user
to commit values from the dialog box, to close the dialog box, or to perform some other action.

AFXDialog supports the automatic creation of an action area and its buttons through the use of
bit flags in the dialog box constructor. You can use the flags described in Table 5–1 to include standard
action area buttons.

Table 5–1 Action area flags.

Button flag Message ID Label Semantics

AFXDialog.
OK

AFXDialog.
ID_CLICKED_OK

OK Commit the values in the dialog
box, process them, and then hide
the dialog box.

AFXDialog.
CONTINUE

AFXDialog.
ID_CLICKED_CONTINUE

Continue… Commit the values in the dialog
box, hide it, and continue collecting
input from the user in another dialog
box or prompt.

5–8

Abaqus ID:
Printed on:

CUSTOM DIALOG BOXES

Button flag Message ID Label Semantics

AFXDialog.
APPLY

AFXDialog.
ID_CLICKED_APPLY

Apply Same as OK, except the dialog box
is not hidden.

AFXDialog.
DEFAULTS

AFXDialog.
ID_CLICKED_DEFAULTS

Defaults Reset the values in the dialog box
to their defaults.

AFXDialog.
YES

AFXDialog.
ID_CLICKED_YES

Yes Invoke the affirmative action in
response to the question posed by
the dialog box.

AFXDialog.
NO

AFXDialog.
ID_CLICKED_NO

No Invoke the negative action in
response to the question posed by
the dialog box.

AFXDialog.
CANCEL

AFXDialog.
ID_CLICKED_CANCEL

Cancel Do not commit the values in the
dialog box; just hide the dialog box.
Optionally, for the AFXDataDialog
a bailout may be posted if the user
has changed any values since the
last commit.

AFXDialog.
DISMISS

AFXDialog.
ID_CLICKED_DISMISS

Dismiss Hide the dialog box without taking
any other action.

AFXDialog also supports the following options that determine the location of the action area:

DIALOG_ACTIONS_BOTTOM

This option places the action area at the bottom of the dialog box and is the default option.

DIALOG_ACTIONS_RIGHT

This option places the action area on the right side of the dialog box.

DIALOG_ACTIONS_NONE

This option does not create an action area; for example, in a toolbox dialog box.

You can also specify whether a separator should be placed between the action area and the rest of
the dialog box by including the following flag in the options:

DIALOG_ACTIONS_SEPARATOR

The style in Abaqus/CAE is to omit a separator if there is already delineation between the action
area and the rest of the dialog box; for example, a frame that stretches across the entire width of the
dialog box along the bottom of the dialog box. The following statements illustrate how you define
an action area in a dialog box with a separator:

5–9

Abaqus ID:
Printed on:

CUSTOM DIALOG BOXES

class ActionAreaDB(AFXDialog):

def __init__(self):

AFXDialog.__init__(self, 'Action Area Example1',
self.OK|self.APPLY|self.CANCEL,
DIALOG_ACTIONS_SEPARATOR)

FXLabel(self, 'Standard action area example dialog.')

Figure 5–4 An example of a standard action area.

5.5.5 Custom action area button names
The flags in Table 5–1 cover all the semantics you might need in a dialog box. As a result, there is no
need for any additional custom flags; however, there may be cases where you want to use a different label
for one of the standard actions. To use a different label for one of the standard actions, you do not specify
any button flags in the constructor arguments; however, you use the appendActionButton method
to add your own action area buttons. The appendActionButton method has two prototypes:

appendActionButton(buttonId) appendActionButton(text, tgt, sel)

The first version of the prototype creates a standard action area button as defined in Table 5–1. The
second version of the prototype creates a button whose label is given as the text argument. In addition, the
second version allows you to set the target and selector so that you can catch messages from this button
and act accordingly. The following statements show how you can create custom action area buttons:

class ActionAreaDB(AFXDialog):
def __init__(self):

AFXDialog.__init__(self, 'Action Area Example 2',
0, DIALOG_ACTIONS_SEPARATOR)

FXLabel(self, 'Custom action area example dialog.')
self.appendActionButton('Highlight', self,

self.ID_CLICKED_APPLY)
self.appendActionButton(self.CANCEL)

5–10

Abaqus ID:
Printed on:

DATA DIALOG BOXES

Figure 5–5 An example of a custom action area.

5.5.6 Action button handling
AFXDialog and AFXDataDialog provide some automatic handling of the messages that are sent
when a button in the action area is clicked. If you want to perform some actions other than those provided
by the dialog box, you must catch the messages sent by the action area buttons and write your own
message handler.

For example, if you want to take an action when the user clicks the Apply button in the dialog
box, you must catch the (ID_CLICKED_APPLY | SEL_COMMAND) message and map it to a message
handler in your dialog box. For more information, see “Targets and messages,” Section 6.5.4.

5.6 Data dialog boxes

A data dialog box is a dialog box in which data are collected from the user. In contrast, a message dialog
box displays only a message and a toolbox just holds buttons. This section describes how you can create
a data dialog box. The following topics are covered:

• “An overview of data dialog boxes,” Section 5.6.1
• “Constructors,” Section 5.6.2
• “Bailout,” Section 5.6.3
• “Constructor contents,” Section 5.6.4
• “Transitions,” Section 5.6.5

5.6.1 An overview of data dialog boxes
A data dialog box is a dialog box in which data are collected from the user. In contrast, a message dialog
box displays only a message, and a toolbox just holds buttons. AFXDataDialog is designed to be used
in conjunction with a mode to gather data from the user. The data are then processed in a command. You
should use AFXDataDialog if you need to issue a command. You should also use AFXDataDialog

5–11

Abaqus ID:
Printed on:

DATA DIALOG BOXES

if the dialog box belongs to a module or nonpersistent toolset so that the GUI infrastructure can properly
manage the dialog box when the user switches modules.

The AFXDataDialog class is derived from AFXDialog and provides the following additional
features:

• A bailout mechanism.
• Standard action area button behavior designed to work with a form.
• Keyword usage.
• Transitions that define GUI state changes in the dialog box.

5.6.2 Constructors
There are two prototypes of the AFXDataDialog constructor. The difference between the two
prototypes is the occluding behavior of the dialog box, as illustrated in the following examples:

• The following statement creates a dialog box that always occludes the main window when
overlapping with the main window:

AFXDataDialog(mode, title, actionButtonIds=0,
opts=DIALOG_NORMAL, x = 0, y = 0, w = 0, h = 0)

• The following statement creates a dialog box that always occludes its owner widget (usually a dialog
box) when overlapping with the widget.

AFXDataDialog(mode, owner, title, actionButtonIds=0,
opts=DIALOG_NORMAL, x = 0, y = 0, w = 0, h = 0)

When you construct a dialog box, you will start by deriving from the AFXDataDialog class. The
first thing you should do in the constructor body is call the base class constructor to properly initialize
the dialog. Then, you would build the contents of your dialog by adding widgets. For example:

class MyDB(AFXDataDialog):

My constructor
def __init__(self):

Call base class constructor
AFXDataDialog.__init__(self, form, 'My Dialog',

self.OK|self.CANCEL)

Add widgets next...

When a dialog box is unposted, it is removed from the screen. By default, a dialog box is deleted
when it is unposted. Deleting a dialog box removes both the GUI resources associated with the dialog
box and the dialog box’s data structures. In contrast, you can choose to destroy a dialog box when it

5–12

Abaqus ID:
Printed on:

DATA DIALOG BOXES

is unposted. Destroying a dialog box removes only the GUI resources and retains the dialog box’s data
structures.

If there is some dialog box GUI state that you want to retain between postings of the dialog box,
you should specify that the dialog box is destroyed only when it is unposted. Therefore, when the dialog
box is posted again, it retains its data structures and the old state is still intact. For example, assume
that your dialog box contains a table and the user resizes one of the columns of the table. If you only
destroy the dialog box when it is unposted, the table column sizes will be remembered the next time
the dialog box is posted. To specify that a dialog box should be destroyed when unposted, add the
DIALOG_UNPOST_DESTROY flag to the dialog box constructor’s opts argument.

5.6.3 Bailout

AFXDataDialog supports automatic bailout handling through the specification of a bit flag in the
dialog box constructor. If you request bailout processing and the user changes some values in the dialog
box and presses Cancel, the application posts a standard warning dialog box. The following statement
requests bailout processing:

AFXDataDialog.__init__(self, form, 'Create Part',
self.OK|self.CANCEL,
DIALOG_ACTIONS_SEPARATOR|DATADIALOG_BAILOUT)

Figure 5–6 An example of a bailout.

After the standard warning dialog box has been posted, the behavior is as follows:

• If the user clicks Yes from the standard warning dialog box, the data dialog box will be processed
as if the user had originally pressed OK.

• If the user clicks No from the standard warning dialog box, the data dialog box will be unposted
without any processing.

• If the user clicks Cancel from the standard warning dialog box, the data dialog box will remain
posted and no action will be taken.

5–13

Abaqus ID:
Printed on:

DATA DIALOG BOXES

5.6.4 Constructor contents
You use the constructor of the dialog box to create the widgets that will appear in the dialog box. To
keep the GUI up-to-date with the application state and vice versa, you use keywords as targets of widgets.
Keywords are defined as members of a form, and the form is passed to the dialog box as a dialog box
constructor argument. For more information, see “AFXKeywords,” Section 6.5.8. The following script
shows how you can use keywords to construct a dialog box. Figure 5–7 shows the Graphics Options
dialog box generated by the example script.

class GraphicsOptionsDB(AFXDataDialog):

#~~
def __init__(self, form):

AFXDataDialog.__init__(self, form, 'Graphics Options',
self.OK|self.APPLY|self.DEFAULTS|self.CANCEL)

Hardware frame
#
gb = FXGroupBox(self, 'Hardware',

FRAME_GROOVE|LAYOUT_FILL_X)
hardwareFrame = FXHorizontalFrame(gb,

0, 0,0,0,0, 0,0,0,0)
FXLabel(hardwareFrame, 'Driver:')
FXRadioButton(hardwareFrame, 'OpenGL',

form.graphicsDriverKw, OPEN_GL.getId())
FXRadioButton(hardwareFrame, 'X11',

form.graphicsDriverKw, X11.getId())
FXCheckButton(gb, 'Use double buffering',

form.doubleBufferingKw)
displayListBtn = FXCheckButton(gb, 'Use display lists',

form.displayListsKw)

View Manipulation frame
#
gb = FXGroupBox(self, 'View Manipulation',

FRAME_GROOVE|LAYOUT_FILL_X)
hf = FXHorizontalFrame(gb, 0, 0,0,0,0, 0,0,0,0)
FXLabel(hf, 'Drag mode:')
FXRadioButton(hf, 'Fast (wireframe)', form.dragModeKw,

FAST.getId())

5–14

Abaqus ID:
Printed on:

DATA DIALOG BOXES

Figure 5–7 Graphics Options data dialog box.

FXRadioButton(hf, 'As is', form.dragModeKw,
AS_IS.getId())

FXCheckButton(gb, 'Auto-fit after rotations',
form.autoFitKw)

5.6.5 Transitions
Transitions provide a convenient way to change the GUI state in a dialog box. Transitions are used to
stipple widgets or to rotate regions when some other control in the dialog box is activated. If the behavior
in your dialog box can be described in terms of simple transitions, you can use the addTransition
method to produce the state changes.

Transitions compare the value of a keyword with a specified value. If the operator condition is met,
a message is sent to the specified target object. Transitions have the following prototype:

addTransition(keyword,
operator, value, tgt, sel, ptr)

For example, when the user selects Wireframe as the render style in the Part Display Options
dialog box, Abaqus/CAE does the following:

• Stipples the Show dotted lines in hidden render style button.

• Stipples the Show edges in shaded render style button.

• Checks the Show silhouette edges button.

5–15

Abaqus ID:
Printed on:

DATA DIALOG BOXES

These transitions can be described as follows:

• If the value of the render style keyword equals WIREFRAME, send the Show dotted lines...
button an ID_DISABLE message.

• If the value of the render style keyword equals WIREFRAME, send the Show edges in shaded...
button an ID_DISABLE message.

• If the value of the render style keyword equals WIREFRAME, send the Show silhouette edges
button an ID_ENABLE message.

You can write these transitions with the Abaqus GUI Toolkit as follows:

self.addTransition(form.renderStyleKw, AFXTransition.EQ,
WIREFRAME.getId(), showDottedBtn,
MKUINT(FXWindow.ID_DISABLE, SEL_COMMAND), None)

self.addTransition(form.renderStyleKw, AFXTransition.EQ,
WIREFRAME.getId(), showEdgesBtn,
MKUINT(FXWindow.ID_DISABLE, SEL_COMMAND), None)

self.addTransition(form.renderStyleKw, AFXTransition.EQ,
WIREFRAME.getId(), showSilhouetteBtn,
MKUINT(FXWindow.ID_ENABLE, SEL_COMMAND), None)

You can also pass additional user data to the object using the last argument of the addTransition
method. Figure 5–8 shows an example that uses transitions to control how the application stipples
widgets.

5.6.6 Updating your GUI
If the GUI behavior of your dialog box cannot be described in terms of simple transitions (for
example, if you need to stipple a button based on the setting of two other buttons), you can use the
processUpdates method to update your GUI. The processUpdates method is called during
each GUI update cycle, so you should not do anything that is time consuming in this method. Generally,
you should perform tasks such as enabling and disabling, or showing and hiding widgets. For example:

def processUpdates(self):

if self.form.kw1.getValue() == 1 and \
self.form.kw2.getValue() == 2:

self.btn1.disable()
else:

self.btn1.enable()

5–16

Abaqus ID:
Printed on:

DATA DIALOG BOXES

Figure 5–8 An example of using transitions to control how the application stipples widgets.

If the tasks you need to perform are time consuming, you should write your own message handler
that is invoked only upon some specific user action. For example, if you need to scan an ODB for valid
data, you could make the commit button of the dialog send a message to your dialog box. That message
would invoke your message handler that does the scanning. That way, the scanning occurs only when the
user commits the dialog, not during every GUI update cycle. For more information on message handlers,
see “Targets and messages,” Section 6.5.4.

5.6.7 Action area
The AFXDataDialog class provides standard handling for all the buttons that can appear in the action
area. Table 5–2 shows the action that the application takes when each of these buttons is clicked.

5–17

Abaqus ID:
Printed on:

COMMON DIALOG BOXES

Table 5–2 Action area buttons.

Button Action

OK Send the form an (ID_COMMIT, SEL_COMMAND) message and its button ID.

Apply Send the form an (ID_COMMIT, SEL_COMMAND) message and its button ID.

Continue Send the form an (ID_GET_NEXT, SEL_COMMAND) message.

Defaults Send the form an (ID_SET_DEFAULTS, SEL_COMMAND) message.

Cancel Check for bailout, send the form an (ID_DEACTIVATE, SEL_COMMAND) message.

“x” in title bar Perform the Cancel button action.

If your dialog has more than one “apply” button, you can handle this by routing messages from the
button to the apply message handler in the form. In the form, you can use the getPressedButtonId
method to determine which button was pressed and take the appropriate action. For example, in your
dialog constructor:

self.appendActionButton('Plot', self, self.ID_PLOT)
FXMAPFUNC(self, SEL_COMMAND, self.ID_PLOT,

AFXDataDialog.onCmdApply
self.appendActionButton('Highlight', self, self.ID_HIGHLIGHT)
FXMAPFUNC(self, SEL_COMMAND, self.ID_HIGHLIGHT,

AFXDataDialog.onCmdApply)

and in your form code:

def doCustomChecks(self):

if self.getPressedButtonId() == self.getCurrentDialog().ID_PLOT:
Enable plot commands, disable highlight commands

else:
Enable highlight commands, disable plot commands

return True

5.7 Common dialog boxes

The Abaqus GUI Toolkit provides some pre-built dialog boxes for handling common operations. This
section provides details on how to use these dialog boxes. The following topics are covered:

• “File/Directory selector,” Section 5.7.1

5–18

Abaqus ID:
Printed on:

COMMON DIALOG BOXES

• “Print dialog box,” Section 5.7.2
• “Color selector dialog box,” Section 5.7.3

5.7.1 File/Directory selector
The File Selector dialog box is used to gather a file or directory name from the user. It has the following
characteristics:

• The title bar can be set.
• The file filters can be set.
• The following error checking is provided:

– Check to see if the file exists.

– Check for proper permissions.

– Check to see if the selection is a file.

• Allows read-only access.
• Accepts keywords and a target.
The file selection dialog box has the following prototypes:

AFXFileSelectorDialog(form, title, fileNameKw,
readOnlyKw, opts, patterns, patternIndexTgt)

AFXFileSelectorDialog(parent, title, fileNameKw,
readOnlyKw, opts, patterns, patternIndexTgt)

You use the first constructor when you have a form associated with the dialog box that issues a
command; for example, the dialog box that appears when you click File→Open Database. You use
the second constructor when the dialog box collects input from the user to be used in another dialog box.
For example, when printing to a file from the Print dialog box, the user is presented with a text field to
enter a file name and a Select button. The Select button posts a file selection dialog box that returns
the selected file to the Print dialog box but does not issue any command.

You must create the fileNameKw argument using the AFXStringKeyword method. Similarly,
you must create the readOnlyKw argument using the AFXBoolKeyword method. If the user clicks
OK, the file selection dialog box automatically updates the fileNameKw and readOnlyKw arguments.
In addition, when the dialog box is posted, it will set the current directory based on the path of the
fileNameKw argument. This means that the dialog box remembers the last directory visited by the user
when the application posts the dialog box again.

The following flags are available for the opts argument:

AFXSELECTFILE_EXISTING

Allows the selection of an existing file only.

5–19

Abaqus ID:
Printed on:

COMMON DIALOG BOXES

AFXSELECTFILE_MULTIPLE

Allows the selection of multiple existing files only.

AFXSELECTFILE_DIRECTORY

Allows the selection of an existing directory only.

AFXSELECTFILE_REMOTE_HOST

Allows the opening of files on a remote host.

You specify the patterns argument as a series of patterns separated by \n. The value of the target
specified by the patternIndexTgt argument determines which pattern is initially shown when the dialog
box is posted.

The following is an example of how a file selection dialog box can be posted from a form:

def getFirstDialog(self):

patterns = 'Output Database (*.odb)\nAll Files (*.*)'
db = AFXFileSelectorDialog(self, 'Open ODB',

self.nameKw, self.readOnlyKw, AFXSELECTFILE_EXISTING,
patterns, self.patternIndexTgt)

db.setReadOnlyPatterns('*.odb')
self.setModal(True)
return db

The following is an example of how a directory selection dialog box can be posted from another
dialog box:

def onCmdDirectory(self, sender, sel, ptr):

if not self.dirDb:
self.dirDb = AFXFileSelectorDialog(self,

'Select a Directory',self.form.dirNameKw,
None, AFXSELECTFILE_DIRECTORY)

self.dirDb.create()

self.dirDb.showModal()
return 1

5.7.2 Print dialog box
The Print dialog box provides standard printing functionality. To post the Print dialog box from a
button in your dialog box, you first access the print form mode by using the getPrintForm method

5–20

Abaqus ID:
Printed on:

COMMON DIALOG BOXES

of the FileToolsetGui class. This can be done by storing a pointer to the form as shown in the following
example:

from sessionGui
import FileToolsetGui

class MyMainWindow(AFXMainWindow):

#~~~
def __init__(self, app, windowTitle=''):

...

fileToolset = FileToolsetGui()
self.printForm = fileToolset.getPrintForm()
self.registerToolset(fileToolset,

GUI_IN_MENUBAR|GUI_IN_TOOLBAR)

...

Then you can use the print form in your dialog box class, as shown below:

printForm = getAFXApp().getAFXMainWindow().printForm
FXButton(parent, 'Print...', None, printForm,

AFXMode.ID_ACTIVATE)

To access the print form, you must construct and register the file toolset. However, you cannot
access the print form from within a plug-in. As a result, you can only use the approach described here
in a customized application.

5.7.3 Color selector dialog box

The AFXColorSelector widget provides the ability to choose a color from a predefined palette of
colors. This dialog box is posted by an AFXColorButton. For more information, see “Color buttons,”
Section 3.1.10.

5–21

Abaqus ID:
Printed on:

Part IV: Issuing commands
This part describes how a dialog box can issue commands to the Abaqus/CAE kernel. The following topics
are covered:

• Chapter 6, “Commands”
• Chapter 7, “Modes”

Abaqus ID:
Printed on:

THE KERNEL AND GUI PROCESSES

6. Commands

This section describes the role of commands in the Abaqus GUI toolkit. The following topics are covered:

• “An overview of commands,” Section 6.1
• “The kernel and GUI processes,” Section 6.2
• “Executing commands,” Section 6.3
• “Kernel commands,” Section 6.4
• “GUI commands,” Section 6.5
• “AFXTargets,” Section 6.6
• “Accessing kernel data from the GUI,” Section 6.7
• “Receiving notification of kernel data changes,” Section 6.8

6.1 An overview of commands

In Abaqus/CAE there are two types of commands: kernel commands and GUI commands.

Kernel commands

Kernel commands are used to build, analyze, and postprocess finite element models. Kernel
commands are documented in the Abaqus Scripting Reference Guide.

GUI commands

GUI commands are used by the user interface to process input gathered from the user and to
construct a kernel command string that is sent to the kernel for execution. GUI commands are
documented in the Abaqus GUI Toolkit Reference Guide.

6.2 The kernel and GUI processes

Abaqus/CAE executes in two processes: a kernel process and a GUI process.

Kernel process

The kernel process holds all the data and methods that Abaqus/CAE uses to perform modeling
operations; for example, creating parts and meshing the assembly. The kernel process can run
independently of the GUI process.

6–1

Abaqus ID:
Printed on:

THE KERNEL AND GUI PROCESSES

GUI process

The GUI is a convenient way for the user to specify input to Abaqus/CAE. A kernel command
string is sent from the GUI process to the kernel process via the inter-process communication (IPC)
protocol. The kernel process interprets and executes the kernel command string. If the kernel
command throws an exception, the exception is propagated back to the GUI process, where it should
be caught and handled properly, typically by posting an error dialog box.

Abaqus/CAE uses an IPC protocol to achieve communication between the kernel and GUI
processes. For example, the GUI often needs to query the kernel for a list of existing part names or for
the values of a particular load that is about to be edited from a dialog box. Similarly, the GUI may need
to be notified when some kernel value changes so that the GUI can update itself; for example, to post
new job messages in the Job Monitor dialog box.

Abaqus/CAE uses targets and messages and the GUI updating process, built into the
Abaqus GUI Toolkit, to achieve communication within the GUI process. For example, an options
dialog box may need to update when the current viewport is changed or some widgets in a dialog box
may need to be grayed out when the user clicks a particular button.

Figure 6–1 illustrates the communication between the kernel and the GUI processes when the user
clicks on a button and then enters values in the dialog box that appears.

Kernel Process GUI Process

 User clicks button that
 will post a dialog box

 Kernel is queried for values

 Values are set, dialog box is posted

 User changes values in dialog box

 GUI responds to user’s changes
 if necessary (e.g., stipples widgets)

 User clicks OK, GUI processes
 input and sends command string

 Exception caught,
 error dialog box is posted

Throw exception

Success?

 Query is processed

 Values are sent to GUI

 Command is executed

Y

N

Done

Figure 6–1 Communication between the kernel and GUI processes.

6–2

Abaqus ID:
Printed on:

EXECUTING COMMANDS

6.3 Executing commands

All commands are ultimately executed in the kernel process, but there are several ways this can be
accomplished:

• You can execute kernel commands from a file by using the –start or –replay options on the command
line.

• You can execute kernel commands from a file by using File→Run Script

• You can type kernel commands in the Abaqus/CAE CLI
• The GUI mode infrastructure can send a command string from the GUI to the kernel process for
execution (see “Command processing,” Section 7.2.4 for details).

• You can issue a kernel command directly from the GUI using the sendCommand function.
The sendCommand function takes three arguments:

• A required string argument specifying the command to be executed in the kernel.
• Two optional Boolean arguments, writeToReplay and writeToJournal.

The optional Boolean arguments control whether or not the sendCommand function writes the
command to the replay or journal file. By default, the sendCommand function writes the command to
the replay file but not to the journal file. If the command modifies the model in any way, you should
record the command in both the replay and journal files. However, if the command modifies only
session data (such as the view of the viewport), you should record the command in the replay file, but
you should not record it in the journal file. By convention, the user should be able to completely recreate
the result of an interactive session by replaying its replay file. Only the commands that are written to
the journal file will be available for data recovery in the event that the application aborts.

Abaqus Scripting Interface commands automatically journal themselves. As a result, if you use
the sendCommand function to issue an Abaqus Scripting Interface command, you should not set
writeToJournal=True. Otherwise, the command will be recorded twice in the journal file. For more
information, see “Abaqus/CAE command files,” Section 9.5 of the Abaqus/CAE User’s Guide.

If you write your own kernel scripting module and functions, you should be aware that you can use
the journalMethodCall function to record a command in the journal file. This option is preferable
to using the writeToJournal argument in the sendCommand function. Your command should not call
journalMethodCall if the command changes the Mdb object using built-in Abaqus Scripting
Interface commands, because these are journaled by default. A command that changes the customData
of the Mdb should call journalMethodCall. For an example that illustrates one common use of the
journalMethodCall function, see “journalMethodCall,” Section 53.11.1 of the Abaqus Scripting
Reference Guide.

In general, you should enclose the sendCommand function in a try block to catch any exceptions
that might be thrown by the kernel command. In order for exceptions to be caught, they should be
class-based exceptions and not simply strings. For example:

6–3

Abaqus ID:
Printed on:

GUI COMMANDS

from abaqusGui import sendCommand
try:

sendCommand("mdb.customData.myCommand('Cmd-1', 50, 200)"
except ValueError, x:

print 'an exception was raised: ValueError: %s' % (x)
except:

exc_type, exc_value = sys.exc_info()[:2]
print 'error. %s.%s'%(exc_type.__name__, exc_value)

6.4 Kernel commands

A kernel command can consist of the following parts:

object + method + arguments (keywords)

Commands do not always have an object, or even arguments, but they will always have a method. For
example:

session.viewports['Viewport: 1'].setValues(width=50, height=100)
|----------- object ------------| method |---- arguments ----|

mdb.models[Model-1'].PointSection(name='Section-3', mass=1.0)
|----- object ------|-- method --|------- arguments --------|

session.viewports['Viewport: 1']. bringToFront()
|---------- object -------------|-- method --|

LeafFromElementSets(elementSets='PART-1-1.E1')
|----- method -----|------- arguments -------|

6.5 GUI commands

GUI commands are designed to work together with modes. Modes perform the command processing and
send the command to the kernel. For more information, see Chapter 7, “Modes.” This section describes
how to construct and use GUI commands. The following topics are covered:

• “Constructing GUI commands,” Section 6.5.1
• “GUI commands and current objects,” Section 6.5.2
• “Keeping the GUI and commands up-to-date,” Section 6.5.3

6–4

Abaqus ID:
Printed on:

GUI COMMANDS

• “Targets and messages,” Section 6.5.4
• “Automatic GUI updating,” Section 6.5.5
• “Data targets,” Section 6.5.6
• “Option versus value mode,” Section 6.5.7
• “AFXKeywords,” Section 6.5.8
• “Expression evaluation,” Section 6.5.9
• “Connecting keywords to widgets,” Section 6.5.10
• “Boolean, integer, float, and string keyword examples,” Section 6.5.11
• “Symbolic constant keyword examples,” Section 6.5.12
• “Tuple keyword examples,” Section 6.5.13
• “Table keyword example,” Section 6.5.14
• “Object keyword example,” Section 6.5.15
• “Defaults objects,” Section 6.5.16

6.5.1 Constructing GUI commands

You use the AFXGuiCommand class to construct a GUI command. The AFXGuiCommand class takes
the following arguments:

mode
Modes are activated through a control in the GUI, typically a menu button. Once amode is activated,
it is responsible for gathering user input, processing the input, sending a command, and performing
any error handling associated with the mode or the commands it sends. For a detailed discussion of
modes, see Chapter 7, “Modes.” The Abaqus GUI toolkit provides two modes:

Form modes

Form modes provide an interface to dialog boxes. Form modes gather input from the user
using one or more dialog boxes.

Procedure modes

Procedure modes provide an interface that guides the user through a sequence of steps by
prompting for input in the prompt area of the application.

method
A String specifying the method of the kernel command.

objectName
A String specifying the object of the kernel command.

6–5

Abaqus ID:
Printed on:

GUI COMMANDS

registerQuery
A Boolean specifying whether or not to register a query on the object.

For example, the following statement creates a command to edit graphics options:

cmd = AFXGuiCommand(self, 'setValues',
'session.graphicsOptions', True)

If you have more than one GUI command in a mode, the commands are processed in the same order in
which they are created in the mode. For more examples of creating GUI commands, see “Form example,”
Section 7.3.1, and “Procedure example,” Section 7.4.1.

6.5.2 GUI commands and current objects

Most commands in Abaqus/CAE operate on the current object; for example, the current viewport or the
current part. As a convenience, modes recognize a special syntax when interpreting the object specified
in a GUI command. If you place %s between square brackets following certain repositories, the mode
replaces the %s with the current name. You should always use this %s syntax, as opposed to hard-coding
a name, so that the current name will always be used in commands.

The following current objects are supported:

Object Specification Mode Interpretation

mdb.models[%s] Current model

mdb.models[%s].parts[%s] Current part

mdb.models[%s].sketches[%s] Current sketch

session.odbs[%s] Current output database

session.viewports[%s] Current viewport

6.5.3 Keeping the GUI and commands up-to-date

If a command edits an object, you should request that a query be registered on that object by specifying
True for the registerQuery argument in the GUI command constructor. Registering a query will cause the
keywords associated with the AFXGuiCommand to be updated with the kernel values when the mode is
started and any time the kernel values change. For example,

cmd = AFXGuiCommand(
mode, 'PointSection', 'mdb.models[%s]', True)

6–6

Abaqus ID:
Printed on:

GUI COMMANDS

In addition, modes recognize session.viewports[%s] as a special repository. The mode
registers a query on the session automatically so that the command will be kept up-to-date if the user
switches the current viewport. The following examples illustrate the special syntax:

cmd = AFXGuiCommand(
mode,'setValues','session.viewports[%s]', True)

cmd = AFXGuiCommand(
mode,'bringToFront','session.viewports[%s]', True)

6.5.4 Targets and messages
The Abaqus GUI Toolkit employs a target/message system to achieve communication within the GUI
process. The target/message system is in contrast to, for example, Motif’s callback mechanism. All
widgets can send and receive messages from any other widget. A message consists of two components:

• A message type

• A message ID

The message type indicates what kind of event occurred; for example, clicking a button. The message
ID identifies the sender of the message.

Most widgets in the Abaqus GUI Toolkit take arguments that specify their target and their ID. Even
if a widget does not take a target and ID as arguments, you can set these attributes using the setTarget
and setSelector methods. For example,

FXButton(parent, 'Label', tgt=self, sel=self.ID_1)

groupBox = FXGroupBox(parent)
groupBox.setTarget(self)
groupBox.setSelector(self.ID_2)

Widgets are capable of sending several types of messages. Two of the most common message types
are SEL_COMMAND and SEL_UPDATE. The SEL_COMMAND message type generally indicates
that a widget was “committed”; for example, the user clicked a push button. The SEL_UPDATEmessage
is sent when a widget is requesting its target to update its state; for more information, see “Automatic
GUI updating,” Section 6.5.5.

A message is routed to a message handler using a map defined in the target class. You add an entry
in the map by specifying which method to call when a message of a certain type and ID is received.
These concepts are illustrated in Figure 6–2.

The message map is defined by using the FXMAPFUNC function (see example below). This macro
takes four arguments: self, message type, message ID, and method name. The method name must be
qualified by the class name: className.methodName. When a message is received whose type and ID
match those defined in an FXMAPFUNC entry, the corresponding method will be called. If you have a

6–7

Abaqus ID:
Printed on:

GUI COMMANDS

Object 1

Object 3

Target: None
Msg ID: 0
Msg Types: Various

Message Map:
 (msgType1, ID_1, onCmdA)
 (msgType2, ID_2, onCmdB)
 (msgType1, ID_3, onCmdA)

onCmdA(...)
 Do something

onCmdB(...)
 Do something

Target: Object 3
Msg ID: ID_1
Msg Types: Various

Object 2

Target: Object 3
Msg ID: ID_2
Msg Types: Various

(ID_1, msgType1)

(ID_2, msgType2)

Figure 6–2 Targets and messages.

large range of IDs that you want to define in the message map, you can use the FXMAPFUNCS function,
which takes one additional argument: self, message type, start message ID, end message ID, and method
name.

Objects react to messages using message handlers. All message handlers have the same prototype,
which contains the following:

• The sender of the message
• The message selector
• Some “user data”

You can extract the type and ID of the message from the selector using the SELTYPE and SELID
functions.

The following code shows how message maps, message IDs, and message handlers work together:

class MyClass(BaseClass):

[
ID_1,
ID_2,
ID_LAST

] = range(BaseClass.ID_LAST, BaseClass.ID_LAST+3)

def __init__(self):

6–8

Abaqus ID:
Printed on:

GUI COMMANDS

BaseClass.__init__(self)
FXMAPFUNC(self, SEL_COMMAND, self.ID_1,

MyClass.onCmdPrintMsg)
FXMAPFUNC(self, SEL_COMMAND, self.ID_2,

MyClass.onCmdPrintMsg)

FXButton(self, 'Button 1', None, self, self.ID_1)
FXButton(self, 'Button 2', None, self, self.ID_2)

def onCmdPrintMsg(self, sender, sel, ptr):

if SELID(sel) == self.ID_1:
print 'Button 1 was pressed.'

elif SELID(sel) == self.ID_2:
print 'Button 2 was pressed.'

return 1

The previous example starts by generating a list of IDs for use in the derived class. Since a widget
has a specific target, the ID of a widget does not have to be globally unique; it needs to be unique only
within the target’s class and base classes. To handle this numbering automatically, the convention is to
define ID_LAST in each class. A derived class should begin its numbering using the value of ID_LAST
defined in its base class. In addition, a derived class should define its own ID_LAST as the last ID in
the derived class. A class that derives from the derived class will then be able to make use of that ID to
begin its numbering. ID_LAST should not be used by any widget. The only purpose of ID_LAST is to
provide an automatic numbering scheme between classes.

The example continues by constructing a message map by adding entries using the FXMAPFUNC
function. In this example, when a message of type SEL_COMMAND and an ID of ID_1 or ID_2 is
received, the script calls the onCmdPrintMsg method.

The two button widgets have their target set to self (MyClass). However, when each widget
sends a message, the widget sends a different message ID and the message handler checks the ID to
determine who sent the message. For example, if the user clicks the first button, the button sends a
(ID_1, SEL_COMMAND)message to MyClass. The class’s message map routes that message to the
onCmdPrintMsg method. The onCmdPrintMsg method checks the ID of the incoming message
and prints Button 1 was pressed.

It is important that your message handlers return the proper value to ensure that the GUI is kept
up-to-date. Returning a 1 in a message handler tells the toolkit that the message was handled. In turn,
if a message is handled, the toolkit assumes that something may have changed that requires an update,
and the toolkit initiates a GUI update process. Returning a 0 in a message handler tells the toolkit that
the message was not handled; therefore, the toolkit does not initiate a GUI update process.

Messages are normally sent by the GUI infrastructure as the result of some interaction in the GUI.
However, you can send a message directly to an object by calling its handle method. The handle

6–9

Abaqus ID:
Printed on:

GUI COMMANDS

method takes three arguments: sender, selector, and userData. The sender is generally the object that is
sending the message. The selector is made up of the message ID and the message type. You can use the
MKUINT function to create a selector, for example, MKUINT(ID_1, SEL_COMMAND). The user data
must be None since this feature is not supported in the Abaqus GUI Toolkit.

6.5.5 Automatic GUI updating
GUI updating is initiated automatically by the Abaqus GUI Toolkit when there are no more events to be
handled, usually when the GUI is idle and waiting for some user interaction. During the automatic GUI
update process, each widget sends a SEL_UPDATE message to its target asking to be updated. In this
way the GUI is constantly polling the application state to keep itself up-to-date.

For example, during automatic GUI updating, a check button sends an update message to its target.
The target checks some application state and determines whether or not the check button should be
checked. If the button should be checked, the target sends back an ID_CHECK message; otherwise, it
sends an ID_UNCHECK message.

Widgets in the toolkit are bidirectional; that is, they can be in either a push state or a pull state.

push state

In a push state the widgets are collecting and sending user input to the application. When a widget is
in the push state, it does not participate in the automatic GUI updating process. Because the widget
is not participating in the automatic GUI updating process, the user has control over the input, rather
than the GUI attempting to update the widget.

pull state

In a pull state the widgets are interrogating the application to keep up-to-date.

6.5.6 Data targets
In a typical GUI application you will want to do the following:

1. Initialize the values in a dialog box.

2. Post the dialog box to allow the user to make changes.

3. Collect the changes from the dialog box.

In addition, you may want the dialog box to update its state if some application state is updated
while the dialog box is posted. Data targets are designed to make these tasks easier for the GUI
programmer. This section describes how the data targets work. The following sections describe how
the Abaqus GUI Toolkit has extended this concept to keywords that are used to construct commands
sent to the kernel.

A data target acts as a bidirectional intermediary between some application state and GUI widgets.
More than one widget can be connected to a data target, but a data target acts on only one piece of
application state. When the user uses the GUI to change a value, the application state monitored by

6–10

Abaqus ID:
Printed on:

GUI COMMANDS

the data target is updated automatically. Conversely, when the application state is updated, the widget
connected to the data target is updated automatically.

As described in “Automatic GUI updating,” Section 6.5.5, widgets can be in a push state or a pull
state.

Push state

In a push state the widgets are collecting and sending user input to the application. Figure 6–3
illustrates how a data target works with a widget that is in a push state. The sequence is as follows:

1. First, the user enters a value of 7 in the text field and then presses Enter.

2. This triggers the text field widget to send an (ID, SEL_COMMAND) message to its
target—the data target.

3. The data target responds by sending the sender—the text field widget—a message requesting
the value in the text field. The data target uses that value to update the value of its data.

7

ID, SEL_COMMAND

ID_GETINTVALUE, SEL_COMMAND
data

Data Target data

The user enters a
value into the text field.

Figure 6–3 A data target with a text field widget in push state.

Pull state

In a pull state the widgets are interrogating the application to keep up-to-date. Figure 6–4 illustrates
how a data target works with a widget that is in a pull state. The sequence is as follows:

1. When the GUI is idle, it initiates a GUI update.

2. The GUI update triggers each widget to send an (ID, SEL_UPDATE) message to its target.

3. In this case the data target responds by sending the sender—the text field widget—a message
telling it to set its value to the value of the data target’s data.

7

ID, SEL_UPDATE

ID_SETINTVALUE, SEL_COMMAND
data

Data Target data

The data target updates
the value in the text field.

Figure 6–4 A data target with a text field widget in a pull state.

6–11

Abaqus ID:
Printed on:

GUI COMMANDS

6.5.7 Option versus value mode

A data target works in one of two modes: value or option. The examples in the previous section described
the value mode. You use the value mode when the actual value of some data is of interest. In contrast,
you use the option mode when you require a selection from many items and the value is not of particular
importance.

For data targets operating in the option mode with a widget in the push state, the behavior is similar
to the value mode described in the previous section. When the user clicks a button, the button sends
an (ID, SEL_COMMAND) message to its target. In turn, the target responds by sending the sender a
message requesting it to update the data target’s data to the value of the sender’s message ID.

For data targets operating in the option mode with a widget in the pull state, the behavior is slightly
different from the value mode described in the previous section. During a GUI update the data target
sends either a check or uncheck message back to the sender, depending on whether the sender’s ID
matches the value of the data target’s data.

For example, Figure 6–5 illustrates a data target operating in the option mode with three radio
buttons in the pull state. Suppose that the value of the data being monitored by the data target is 13 and
the message IDs of the radio buttons are 2, 13, and 58, respectively. The sequence is as follows:

1. During a GUI update the first radio button sends a (2, SEL_UPDATE)message to the data target.

2. The data target compares the message ID (2) to the value of its data (13) and sends an uncheck
message back to the radio button since the values do not match.

3. The second radio button then sends a (13, SEL_UPDATE) message to the data target.

4. The data target compares the values and sends a check message back to the radio button since the
values do match.

5. Similarly, the third button receives an uncheck message from the data target since the values of the
message ID and its data do not match.

In this way the Abaqus GUI Toolkit automatically maintains the radio button behavior (only one button
at a time will ever be checked).

6–12

Abaqus ID:
Printed on:

GUI COMMANDS

Option 2

ID2, SEL_UPDATE

ID_CHECK, SEL_COMMAND

Data Target data

Option 1

ID1, SEL_UPDATE

ID_UNCHECK, SEL_COMMAND

Option 3

ID3, SEL_UPDATE

ID_UNCHECK, SEL_COMMAND

The data
target
updates
the three
radio buttons

(ID=2)

(ID=13)

(ID=58)

Figure 6–5 A data target operating on three radio buttons in option mode and a pull state.

6.5.8 AFXKeywords
Keywords generate the arguments to a GUI command. These keywords belong to the command, but the
keywords are also stored as members of the mode. As a result, you can easily connect the keywords to
widgets in a dialog box that updates the value of the keywords. For more information, see Chapter 5,
“Dialog boxes.”

AFXKeyword is the base class for keywords in the toolkit. The AFXKeyword class derives from
a data target, so it automatically keeps the GUI and application data synchronized with each other. For
more information, see “Data targets,” Section 6.5.6.

The AFXKeyword class extends the functionality of the FXDataTarget class by holding
additional values, such as the name of the keyword, a default value, and a previous value. The keyword’s
GUI command uses this information to construct a kernel command string.

You can designate a keyword as optional or required. A required keyword is always issued by
the GUI command. An optional keyword, whose values have not changed since the last commit of the
command, is not issued by the GUI command. If none of the keywords has changed since the last commit,
no GUI command will be issued when the mode is committed.

The following types of keywords are supported:

AFXIntKeyword(cmd, name, isRequired, defaultValue)

AFXFloatKeyword(cmd, name, isRequired, defaultValue)

6–13

Abaqus ID:
Printed on:

GUI COMMANDS

AFXStringKeyword(cmd, name, isRequired, defaultValue)

AFXBoolKeyword(cmd, name, booleanType, isRequired,
defaultValue)

AFXSymConstKeyword(cmd, name, isRequired, defaultValue)

AFXTupleKeyword(cmd, name, isRequired, minLength,
maxLength, opts)

AFXTableKeyword(cmd, name, isRequired, minLength,
maxLength, opts)

AFXObjectKeyword(cmd, name, isRequired, defaultValue)

The type of data supported by each keyword is implied from the name of its constructor, except
for AFXObjectKeyword. An object keyword is one that supports specifying a variable name as the
keyword’s value.

The prototypes for all the keywords are similar. The first two arguments of a keyword are:

• A GUI command object.
• A String specifying the name of the keyword.

All keywords also support an argument that determines whether the keyword is required or optional. If
a keyword is required, it will always be sent with the command. If a keyword is optional, it will be
sent only if its value changes. However, if the keyword is connected to a widget that is hidden, then the
keyword will not be sent regardless of whether it is required or optional.

Most keywords support the specification of a default value. When you construct a keyword, its
value is set to the default value. If you use the keyword’s setDefaultValue method to change
the default value, you will not affect the value of the keyword unless you also call the keyword’s
setValueToDefault method. In contrast, if you want to change only the value of the keyword,
without changing its default value, you should use the keywords’ setValue method.

When the mode issues the command to the kernel, the keywords will be ordered in the same order
in which they were created in the mode.

When storing keywords in the mode class, the convention is to name the keyword object using the
same name as the keyword label plus Kw. For example,

self.rKw = AFXIntKeyword(self.cmd, 'r', True)
self.tKw = AFXFloatKeyword(self.cmd, 't', True)
self.nameKw = AFXStringKeyword(cmd, 'name', True, 'Part-1')
self.twistKw = AFXBoolKeyword(cmd, 'twist',

6–14

Abaqus ID:
Printed on:

GUI COMMANDS

AFXBoolKeyword.ON_OFF, 0)
self.typeKw = AFXSymConstKeyword(cmd, 'type', True,

SHADED.getId())
self.imageSizeKw = AFXTupleKeyword(cmd, 'imageSize', False,

1, 2, AFXTUPLE_TYPE_FLOAT)

6.5.9 Expression evaluation

The AFXFloatKeyword and AFXIntKeyword both support expression evaluation. This means
that you can type a numeric expression into a text field connected to an AFXFloatKeyword or
AFXIntKeyword and that expression will get evaluated. For example, you could type any of the
following expressions into a text field connected to an AFXFloatKeyword:

3 + (7 * 22)
2 * 3.1415 * 1.5
125/55.8

The expression will get sent in the command, so it will appear in the replay and journal files, but
once the command is processed in the kernel, only the resultant value gets stored and the expression is
lost.

Expression evaluation is always available with an AFXFloatKeyword, but it is optional
for AFXIntKeyword (the default is to perform expression evaluation). If you connect an
AFXIntKeyword to an AFXList or AFXComboBox and the choices shown in the list or combo box
do not represent numeric values, you must disable expression evaluation. For example:

Form code snippet:

self.orderKw = AFXIntKeyword(cmd=cmd, name='order',
isRequired=False, defaultValue=1, evalExpression=False)

Dialog code snippet:

combo = AFXComboBox(self, 8, 3, 'Order:', form.orderKw, 0)
combo.appendItem('First', 1)
combo.appendItem('Second', 2)
combo.appendItem('Third', 3)

The command snippet from this code will look like:

someCommand(order=2, ...)

6–15

Abaqus ID:
Printed on:

GUI COMMANDS

6.5.10 Connecting keywords to widgets
Keywords are used in the GUI by setting them as the targets of widgets. The AFXDataDialog
class takes a mode as one of its constructor arguments. The dialog box uses the mode provided in the
constructor to access the keywords stored in the mode. In addition, the dialog box uses the keywords as
targets of widgets in the dialog.

In addition to a target, a widget also has a message ID. It is important that the appropriate ID be
set for the keyword to operate in the proper mode: value or option. For more information, see “Data
targets,” Section 6.5.6. In most cases a value of zero should be used for the message ID; a value of zero
indicates that the keyword should operate in value mode. The table below summarizes the message ID
usage with keywords, and the following sections give examples for each type of keyword.

Keyword ID Description

AFXIntKeyword 0 Keyword operates in value mode. Use this when the
keyword is connected to a text field, list, combo box,
or spinner.

>0 Keyword operates in option mode. Use this when the
keyword is connected to a radio button.

AFXFloatKeyword 0 Keyword operates in value mode.

AFXStringKeyword 0 Keyword operates in value mode.

AFXBoolKeyword 0 Keyword operates in value mode. This keyword should
be used only with widgets that allow only Boolean
values, such as FXCheckButton.

AFXSymConstKeyword 0 Keyword operates in value mode. Use this value when
the keyword is connected to a list or combo box.

> 0 Keyword operates in option mode. Use the value
of the Symbolic Constant’s ID when the keyword is
connected to a radio button. Do not use this keyword
with FXCheckButton.

AFXTupleKeyword 0 Keyword operates in value mode. Use this value when
the entire tuple is gathered from a single widget.

1,
2,
3,.

Keyword operates in value mode for only the nth
element of the tuple, where n=ID. Use this value when
the input for each element is gathered from separate
widgets.

6–16

Abaqus ID:
Printed on:

GUI COMMANDS

Keyword ID Description

AFXTableKeyword 0 Keyword operates in value mode.

AFXObjectKeyword 0 Keyword operates in value mode.

6.5.11 Boolean, integer, float, and string keyword examples
The following statements illustrate the use of Boolean, integer, float, and string keywords:

Boolean keyword with a checkbox
#
FXCheckButton(self, 'Show node labels', mode.nodeLabelsKw, 0)

#Boolean keyword with option tree list
#
self.tree = AFXOptionTreeList(parent, 6)
self.treeitem.addItemLast('Item 1', mode.item1Kw)

Integer keyword
#
AFXTextField(self, 8, 'Number of CPUs:', mode.cpusKw, 0)

combo = AFXComboBox(self, 8, 3, 'Number:', mode.numberKw, 0)
combo.appendItem('1', 1)
combo.appendItem('2', 2)
combo.appendItem('3', 3)

Float keyword
#
AFXTextField(self, 8, 'Radius:', mode.radiusKw, 0)

String keyword
#
AFXTextField(self, 8, 'Name:', mode.nameKw, 0)

6.5.12 Symbolic constant keyword examples
Symbolic constants provide a way to specify choices for a command argument that make the command
more readable. For example, there are three choices for the renderStyle argument in display options

6–17

Abaqus ID:
Printed on:

GUI COMMANDS

commands. We could number these choices using integer values from 1 to 3. However, using
integer values would result in a command that is not very readable; for example, renderStyle=2.
Alternatively, if we define symbolic constants for each choice, the command becomes more readable;
for example, renderStyle=HIDDEN. Internally, symbolic constants contain an integer ID that can
be accessed via its getId() method. Symbolic constants can be used in both the GUI and kernel
processes. Typically you should create a module that defines your symbolic constants and then import
that module into both your kernel and GUI scripts.

You can import the SymbolicConstant constructor from the symbolicConstants module. The
constructor takes a single string argument. By convention, the string argument uses all capital letters, with
an underscore between words, and the variable name is the same as the string argument. For example,

from symbolicConstants import SymbolicConstant
AS_IS = SymbolicConstant('AS_IS')

In the case of symbolic constant keywords, you can use a value of zero or the value of the ID of a
symbolic constant for the message ID. Symbolic constants have a unique integer ID that is used to set
the value of symbolic constant keywords along with a string representation that is used in the generation
of the command. To access the integer ID of a symbolic constant, use its getId method.

If the keyword is connected to a list or combo box widget, you should use a value of zero for the
ID in the widget constructor. The AFXList, AFXComboBox, and AFXListBox widgets have been
designed to handle symbolic constant keywords as targets. When items are added to a list or combo box,
a symbolic constant’s ID is passed in as user data. These widgets react by setting their value to the item
whose user data matches the value of their target, as opposed to setting their value to the item whose
index matches the target’s value. The following example illustrates how a combo box can be connected
to a symbolic constant keyword:

combo = AFXComboBox(hwGb, 18, 4, 'Highlight method:',
mode.highlightMethodHintKw, 0)

combo.appendItem('Hardware Overlay', HARDWARE_OVERLAY.getId())
combo.appendItem('Software Overlay', SOFTWARE_OVERLAY.getId())
combo.appendItem('XOR', XOR.getId())
combo.appendItem('Blend', BLEND.getId())

If the keyword is connected to a radio button, you should use the ID of the symbolic constant that
corresponds to that radio button for the message ID. Since the ID of all symbolic constants is greater than
zero, this tells the keyword to operate in option mode. The following example illustrates how symbolic
constant keywords can be used with radio buttons:

from abaqusConstants import *
...

Modeling Space
#
gb = FXGroupBox(self, 'Modeling Space',

6–18

Abaqus ID:
Printed on:

GUI COMMANDS

FRAME_GROOVE|LAYOUT_FILL_X)
FXRadioButton(gb, '3D', mode.dimensionalityKw,

THREE_D.getId(), LAYOUT_SIDE_LEFT)
FXRadioButton(gb, '2D Planar', mode.dimensionalityKw,

TWO_D_PLANAR.getId(), LAYOUT_SIDE_LEFT)
FXRadioButton(gb, 'Axisymmetric',

mode.dimensionalityKw, AXISYMMETRIC.getId(),
LAYOUT_SIDE_LEFT)

6.5.13 Tuple keyword examples

In the case of tuple keywords, a value of zero for the message ID indicates that the entire tuple will be
updated. For example, you can use a single text field to collect X-, Y-, and Z-inputs from the user. In this
case the comma-separated string entered by the user is used to set the entire value of the tuple keyword.
For example, if you define a tuple keyword as follows:

self.viewVectorKw = AFXTupleKeyword(cmd, 'viewVector',
True, 3, 3)

you can connect the tuple keyword to a single text field as follows:

AFXTextField(self, 12, 'View Vector (X,Y,Z)',
mode.viewVectorKw, 0)

Alternatively, you can use three separate text fields to collect X-, Y-, and Z-inputs. Each of the text field
widgets uses a message ID equal to the element number (1-based) of the tuple to which they correspond.
For example, 1 corresponds to the first element of the tuple; 2 corresponds to the second element in the
tuple, etc. In this case we can connect the keyword to three text fields as follows:

AFXTextField(self, 4, 'X:', mode.viewVectorKw, 1)
AFXTextField(self, 4, 'Y:', mode.viewVectorKw, 2)
AFXTextField(self, 4, 'Z:', mode.viewVectorKw, 3)

6.5.14 Table keyword example

The AFXTableKeyword must be connected to a table widget. This type of keyword will result in a
command argument that is a tuple of tuples. The values in a table keyword can be Ints, Floats, or Strings.

The default minimum number of rows is 0, and the default maximum number rows is −1, indicating
that the number of rows is unlimited. Tables can vary in size because the user can add or delete rows; as
a result, you usually specify the defaults for the minimum and maximum number of rows. For example,
to generate a command that creates XY data, you can define the following keywords in the form

6–19

Abaqus ID:
Printed on:

GUI COMMANDS

self.cmd = AFXGuiCommand(self, 'XYData', 'session')
self.nameKw = AFXStringKeyword(self.cmd, 'name', True)
self.dataKw = AFXTableKeyword(

self.cmd, 'data', True, 0, -1, AFXTABLE_TYPE_FLOAT)

In the dialog box you connect the table keyword to a table using a selector value of zero.

table = AFXTable(vf, 6, 3, 6, 3,
form.dataKw, 0, AFXTABLE_NORMAL|AFXTABLE_EDITABLE)

If you have a table in which you are interested in the values of only a single column, you can make
use of the AFXColumnItems object to track selections. For example, if a table contains Name and
Description columns, you might only need the names in the selected rows for your command. In that
case you could use AFXColumnItems to keep a tuple keyword up to date with the names in the selected
rows of the table as shown in the following code:

ci = AFXColumnItems(referenceColumn=0, tgt=form.tupleKw, sel=0)
table = AFXTable(self, 4, 2, 4, 2, ci, 0,

AFXTABLE_NORMAL|AFXTABLE_ROW_MODE|AFXTABLE_EXTENDED_SELECT

6.5.15 Object keyword example

The AFXObjectKeyword has a variable name for its value. In most cases you use an
AFXObjectKeyword in a command that is preceded by some setup commands. For example,

p = mdb.models['Model-1'].parts['Part-1']
session.viewports['Viewport: 1'].setValues(displayedObject=p)

In this example, in the form you would issue the first command “manually,” and use an object keyword
as part of an AFXGuiCommand to have the second command issued using “p” as the variable name. For
example,

self.cmd = AFXGuiCommand(self, 'setValues',
'session.viewports[%s]')

self.doKw = AFXObjectKeyword(self.cmd, 'displayedObject',
True, 'p')

You also use an AFXObjectKeyword in procedures that require picking. For more information, see
“Picking in procedure modes,” Section 7.5.

6–20

Abaqus ID:
Printed on:

ACCESSING KERNEL DATA FROM THE GUI

6.5.16 Defaults objects
A defaults object can be used to restore the values of the keywords in a command to their default values
when the user presses the Defaults button in the dialog box. You can register a defaults object with a
command as follows:

self.registerDefaultsObject(cmd,
'session.defaultGraphicsOptions')

In addition, the AFXGuiCommand class has a setKeywordValuesToDefaults method
that you can use to initialize the state of all keywords in a command. In most cases you use
the setKeywordValuesToDefaults method to initialize the state of all keywords in the
getFirstDialog method of the mode. As a result, the application will initialize the value of the
keywords in a command each time the dialog box is posted.

If no defaults object is specified, the command uses the default values specified in the keyword’s
constructor when the user presses the Defaults button in the dialog box.

6.6 AFXTargets

Targets are similar to keywords in that they automatically keep their data synchronized with the GUI;
however, targets do not participate in command processing. Targets are typically used to monitor the
value of some widget in the GUI that is not directly related to a command; for example, selecting the
type of load to create from the Create Load dialog box. The following types of targets are supported:

• AFXIntTarget(initialValue)

• AFXFloatTarget(initialValue)

• AFXStringTarget(initialValue)

6.7 Accessing kernel data from the GUI

You can use the abaqusGui module or the kernelAccess module to access the kernel mdb and
session objects from the GUI in Abaqus/CAE. Each module has advantages and disadvantages for
programming in the GUI. You access the objects from each module in the same way:

from abaqusGui import mdb, session

or

from kernelAccess import mdb, session

In each case the imported objects are proxies for the actual objects in the kernel.

6–21

Abaqus ID:
Printed on:

RECEIVING NOTIFICATION OF KERNEL DATA CHANGES

You can query the abaqusGui module mdb and session proxy objects for attributes of objects,
but they cannot be used for arbitrary method calls (repository methods such as keys(), values(),
and items() are allowed). The abaqusGui proxy objects are regularly updated from the kernel, and
accessing them is an in-process function call (fast). However, in some cases the proxy objects can get
out of date. For example, when a script is running the proxy objects are not updated until it ends.

You can use the kernelAccess module mdb and session proxy objects to execute any Abaqus
Scripting Interface kernel command. In addition to querying attributes of the kernel objects, you can
call their methods and obtain any return values as if you were executing the code in the kernel. The
kernelAccess proxy objects are always up-to-date because accessing them calls the kernel object
synchronously, creating inter-process communication (IPC) traffic. This immediate interaction with the
kernel creates a performance disadvantage when you use the kernelAccess proxy objects instead of
the abaqusGui module proxy objects. For example, call the getVolume method of the Part object:

from kernelAccess import mdb, session
partNames = mdb.models['Model-1'].parts.keys()
v = mdb.models['Model-1'].parts['Part-1'].getVolume()

This procedure involves GUI-kernel communication via the IPC mechanism, so it is not
recommended for use where performance is a concern. In other words, you should only use this
procedure for accessing data or calling methods that do not take a “long time” to execute. If performance
does become a problem, you can access the mdb and session objects from the abaqusGui module
instead of the kernelAccess module.

Although you can import the kernelAccess module in a script that is executed before the
application startup script has completed, you cannot query the mdb and session objects until the
application startup script has completed. In other words, you can import the kernelAccess module
in your scripts in code that is executed during the initial construction of the GUI; however, you should
not attempt to access either the mdb or session object until it is needed because of some user interaction
in the GUI. For more information, see “Startup script,” Section 11.2

6.8 Receiving notification of kernel data changes

This section describes how the GUI can be notified when kernel objects and custom kernel objects are
modified outside the GUI process. The following topics are covered:

• “Automatically registering a query on kernel objects,” Section 6.8.1
• “Manually registering a query on kernel objects,” Section 6.8.2
• “Using registerQuery on kernelAccess proxy objects,” Section 6.8.3
• “Recognizing when custom kernel data change,” Section 6.8.4

6–22

Abaqus ID:
Printed on:

RECEIVING NOTIFICATION OF KERNEL DATA CHANGES

6.8.1 Automatically registering a query on kernel objects

Queries provide a mechanism that allows the GUI process to be notified when data in the kernel change.
“Keeping the GUI and commands up-to-date,” Section 6.5.3, describes how you use the registerQuery
argument of the AFXGuiCommand constructor. The registerQuery argument is a Boolean flag that
specifies whether to register a query automatically on the object being edited by the specified kernel
command. If the kernel object specified in the AFXGuiCommand constructor changes, the infrastructure
updates the keywords in the GUI with the latest values. As a result, you do not need to register a query
explicitly. By default, registerQuery= False, and the query is not automatically registered.

For example,

cmd = AFXGuiCommand(mode,'setValues', mdb.models[%s].parts[%s],
True)

In this example, if the user changes the current part, the path to the setValues method is updated to
reflect the new current part. As a result, when the user clicks OK to commit a customized dialog box,
the mode issues a setValues command that modifies the current part.

6.8.2 Manually registering a query on kernel objects

For objects not directly related to a command, such as a repository, you may wish to register a query
yourself. You can register a query on an Abaqus/CAE object using the registerQuerymethod. This
method takes a callback function as an argument. When the object upon which the query is registered
changes, the infrastructure automatically calls the function supplied in the registerQuery method.
For example,

from abaqusGui import *

def onPartsChanged():
print 'The parts repository changed.'
keys = mdb.models['Model-1'].parts.keys()
print 'The new keys are:', keys

mdb.models['Model-1'].parts.registerQuery(onPartsChanged)

In the previous example, if a part is created, deleted, renamed, or edited, the onPartsChangedmethod
will be called.

The registerQuery method takes an optional second argument that determines whether or not
the callback is called when the query is first registered. By default, this argument is True, and the callback
will be called when the query is first registered. If you specify False as the second argument, the query
callback is not called when the query is first registered. Delaying the query callback can prevent errors

6–23

Abaqus ID:
Printed on:

RECEIVING NOTIFICATION OF KERNEL DATA CHANGES

in certain situations; for more information, see “Using registerQuery on kernelAccess proxy
objects,” Section 6.8.3.

Since registered queries create “traffic” between the kernel and GUI processes, you should
unregister queries when you do not need them. To unregister a query, use the unregisterQuery
method and pass the same arguments that you used in the registerQuery method. In most cases,
you register queries within the show method that you write for your dialog box that needs the queries.
Similarly, you unregister queries within the hide method that you write for your dialog box. If you do
not unregister a query and the query fires when the dialog box is not posted, the application may abort
if the callback tries to modify a widget in the dialog box.

If the user creates, deletes, renames, or edits a part in the following example, the application will
call the onPartsChanged method and update the dialog box:

class MyDialog(AFXDataDialog):

...

def onPartsChanged(self):

Code to update the part list
in the dialog box

def show(self):

from kernelAccess import mdb
mdb.models['Model-1'].parts.registerQuery(

self.onPartsChanged)
AFXDataDialog.show(self)

def hide(self):

from kernelAccess import mdb
mdb.models['Model-1'].parts.unregisterQuery(

self.onPartsChanged)
AFXDataDialog.hide(self)

6.8.3 Using registerQuery on kernelAccess proxy objects

It is possible to call the registerQuery method on a kernelAccess module proxy object instead
of the abaqusGui proxy object. However, internally the query is always registered on the abaqusGui
proxy object. The two kinds of proxy objects are not always perfectly synchronized. In most cases, this

6–24

Abaqus ID:
Printed on:

RECEIVING NOTIFICATION OF KERNEL DATA CHANGES

will not matter. However, it can cause a problem if the query is registered while a change is being made
on the kernel. For example,

from kernelAccess import mdb

def onPartsChanged():
print 'The parts repository changed.'
keys = mdb.models['Model-1'].parts.keys() # OK
print 'The new keys are:', keys
if keys:

mdb.models['Model-1'].parts[keys[0]].registerQuery(onPartsChanged) # Not OK
Internally the registerQuery method will be called on abaqusGui.mdb...

mdb.models['Model-1'].parts.registerQuery(onPartsChanged)

If a changeKey command that affects the names in the parts repository is subsequently issued,
the above example will fail. The keys (part names) are obtained using the kernelAccess mdb
proxy object and contain the changed name. However, the registerQuery method—based on the
abaqusGui proxy object—does not see the new names until the changeKey command is completed.
The registerQuery on the newly named part object (using keys()[0]) is being called within
the callback, before the changeKey command is completed, and the callback is using the new name.
Since the abaqusGui proxy for the parts repository has not yet been updated, a Keyerror is raised.

Run the above example in the GUI, create a part, then enter the following in the command line
interface (CLI):

>>> mdb.models['Model-1'].parts.changeKey('Part-1', 'ROD')

You will get the following error:

Traceback (most recent call last):
File "path and filename of the example script",

line 9, in onPartsChanged
mdb.models['Model-1].parts[partNames[0]].registerQuery

(onPartsChanged) # Not OK
KeyError: 'ROD'

The error can cause Abaqus/CAE to stop responding. Setting the second argument on registerQuery
to False prevents the callback from being called immediately and prevents this potential error.

6.8.4 Recognizing when custom kernel data change

To receive notification in the GUI of changes made to custom kernel objects, those kernel objects must
make use of special classes provided by the customKernel module. The customKernel module
provides the following special classes, all of which are capable of notifying the GUI when the contents
of the class changes:

6–25

Abaqus ID:
Printed on:

RECEIVING NOTIFICATION OF KERNEL DATA CHANGES

• CommandRegister allows you to create general classes. For more information, see
“CommandRegister class,” Section 5.6.3 of the Abaqus Scripting User’s Guide.

• RepositorySupport allows you to create repositories below other repositories. For more
information, see “RepositorySupport,” Section 5.6.6 of the Abaqus Scripting User’s Guide.

• RegisteredDictionary allows you to create custom dictionaries. For more information, see
“Registered dictionaries,” Section 5.6.7 of the Abaqus Scripting User’s Guide.

• RegisteredList allows you to create custom lists. Formore information, see “Registered lists,”
Section 5.6.8 of the Abaqus Scripting User’s Guide.

• RegisteredTuple allows you to create custom tuples. For more information, see “Registered
tuples,” Section 5.6.9 of the Abaqus Scripting User’s Guide.

For more information on the customKernel module, see “Extending the Abaqus Scripting
Interface,” Section 5.6 of the Abaqus Scripting User’s Guide.

6–26

Abaqus ID:
Printed on:

MODE PROCESSING

7. Modes

A mode is a mechanism for gathering input from the user, processing that input, and then issuing a
command to the kernel. This section describes the modes that are available in the Abaqus GUI Toolkit.
The following topics are covered:

• “An overview of modes,” Section 7.1
• “Mode processing,” Section 7.2
• “Form modes,” Section 7.3
• “Procedure modes,” Section 7.4
• “Picking in procedure modes,” Section 7.5

7.1 An overview of modes

There are two types of modes:

Form Modes

Form modes provide an interface to standalone dialog boxes.

Procedure Modes

Procedure modes provide an interface that uses the prompt area to guide the user through a sequence
of steps that collect input from dialog boxes or from selections in the viewport.

If a mode needs to perform drawing or highlighting in the current viewport, the mode must be a procedure
mode. Because Abaqus/CAE highlights objects that the user picks, any mode that requires the user to
pick in the viewport must also be a procedure mode. Procedure modes ensure that only one procedure
at a time has control over the scene in the current viewport. If two different procedures could highlight
different portions of the model for different purposes, the resulting display would be confusing and
ambiguous.

7.2 Mode processing

Modes are typically activated by a button in the GUI. Once a mode is activated, it is responsible for
gathering user input, processing the input, sending a command, and performing any error handling
associated with the mode or the commands it sends. This section describes how modes are processed.
The following topics are covered:

• “The mode processing sequence,” Section 7.2.1
• “Activating a mode,” Section 7.2.2

7–1

Abaqus ID:
Printed on:

MODE PROCESSING

• “Step and dialog box processing,” Section 7.2.3
• “Command processing,” Section 7.2.4
• “Work in progress,” Section 7.2.5
• “Command error handling,” Section 7.2.6

7.2.1 The mode processing sequence

During the input gathering process, the mode allows you to perform some intermediate error checking.
For example, if the user is supposed to enter a value between zero and one but enters a value outside this
range, you can flag the error before continuing to collect more input. After all the inputs are collected
from the user, the mode verifies the input, constructs the command, and sends the command to the kernel.
If there is an exception thrown by the kernel, the mode will handle the exception. The mode processing
sequence is shown in Figure 7–1.

To provide custom processing in your mode, you can overwrite many of the methods shown in
Figure 7–1. If you overwrite a method, you should use the exact same prototype for your method,
including the same default values that the method may have. Refer to the Abaqus GUI Toolkit Reference
Guide to determine the prototype of a method.

7.2.2 Activating a mode

A mode is usually activated by sending it a message with its ID set to ID_ACTIVATE and a type
of SEL_COMMAND. This message causes the activate method of the mode to be called. For more
information, see “Targets and messages,” Section 6.5.4.

If you need to do any processing before a mode begins to collect input from the user, you can
redefine the activate method. For example, you can check that the current viewport contains a part before
beginning a mode that requires the user to pick something on a part, as shown in the following method:

def activate(self):

if getDisplayedObjectType() == PART:
AFXForm.activate(self)

else:
showAFXErrorDialog(getAFXApp().getAFXMainWindow(),

'A part must be displayed in the \
current viewport.')

If you write your own activate (or deactivate) method, you must call the base class version of that
method if no error conditions are encountered. The base class methods perform additional processing
necessary to make the mode function properly.

7–2

Abaqus ID:
Printed on:

MODE PROCESSING

verifyCurrentKeywordValues()

 N

Y

doCustomChecks()

Errors?

N

Y

getNextStep/Dialog()

getFirstStep/Dialog()
Errors?

Y

verifyKeywordValues()

getCommandString()

sendCommandString()

Errors?

N

Y handleException()

doCustomTasks()

N

doCustomChecks()

Errors?

N

Y

activate()

Get user input

deactivate () or Loop

More
steps?

Errors?
Y

N

Figure 7–1 The mode processing sequence.

7.2.3 Step and dialog box processing
After a mode is activated, it cycles through a sequence of events collecting inputs from the user and
verifying the inputs. After the user commits each step or dialog box, the mode calls the following
methods:

verifyCurrentKeywordValues

The verifyCurrentKeywordValues method calls the verify method for each keyword
associated with the current step or dialog box, and the method posts an error dialog box if necessary.
The verifyCurrentKeywordValues method returns True if no errors were encountered;
otherwise, it returns False and terminates further processing.

7–3

Abaqus ID:
Printed on:

MODE PROCESSING

doCustomChecks

The doCustomChecks method has an empty implementation in the base class. You can redefine
this method to perform any additional checking of keyword values, typically to perform range
checking or to check some interdependency between values. The doCustomChecks method
should return True if no errors were encountered; otherwise, it should return False so that further
command processing will be terminated. The doCustomChecks method is called by the mode
during step and dialog box processing and during command processing.

7.2.4 Command processing

When the mode finishes collecting inputs from the user, it calls a series of methods. If needed, you can
redefine some of the methods to customize the behavior of the mode. The following list describes each
of the methods called by the mode:

verifyKeywordValues

The verifyKeywordValues method calls the verify method for each keyword of
each command associated with the mode and posts an error dialog box if necessary. The
verifyKeywordValues method returns True if no errors were encountered; otherwise, it
returns False and terminates further command processing.

doCustomChecks

The doCustomChecks method has an empty implementation in the base class. You can redefine
this method to perform any additional checking of keyword values, typically to perform range
checking or to check some interdependency between values. The doCustomChecks method
should return True if no errors were encountered; otherwise, it should return False so that further
command processing will be terminated. The doCustomChecks method is called by the mode
during step and dialog box processing and during command processing.

The following example shows how you can use the doCustomChecks method to find an
invalid value and, in response, to post an error dialog box and put the cursor into the appropriate
widget. If the keyword is connected to a text field in the dialog, the onKeywordError method
finds the text field widget, select its contents, and places the focus on the widget.

def doCustomChecks(self):

if self.lengthKw.getValue() >= 1000:
showAFXErrorDialog(self.getCurrentDialog(),

'Length must be less than 1000.')
self.getCurrentDialog().onKeywordError(self.lengthKw)
return False

7–4

Abaqus ID:
Printed on:

MODE PROCESSING

issueCommands

The issueCommandsmethod is responsible for constructing the command string, issuing it to the
kernel, handling any exceptions from the command, and deactivating the mode if necessary. The
issueCommands method calls the following methods:

• getCommandString: This method returns a string that represents the commands collected
from each command associated with the mode. Required keywords are always sent with the
command, but optional keywords are sent only if their value has changed. The commands
are issued to the kernel in the same order as the commands were constructed in the mode. If
your command does not fit the standard style of the command generated by the mode, you can
redefine this method to generate your own command string.

• sendCommandString: This method takes the command string returned from the
getCommandString method and sends it to the kernel for processing. You should not
overwrite this method or your mode may not perform properly.

• doCustomTasks: This method has an empty implementation in the base class. You can
redefine this method to perform any additional tasks required after a command is processed by
the kernel.

After calling these methods, the issueCommands method will deactivate the mode if the user
pressed the OK button.

The issueCommands method also controls the writing of the command to the
replay and journal files. The GUI infrastructure always calls issueCommands with
writeToReplay=True and writeToJournal=False. If you want to change the behavior,
you can overwrite this method and specify different values for the arguments. If you overwrite the
issueCommands method you must specify both arguments, and you should always call the base
class method from your method or your mode may not perform properly. For example:

def issueCommands(self, writeToReplay, writeToJournal):
AFXForm.issueCommands(self, writeToReplay=True,

writeToJournal=True)

In most cases, you do not need to call issueCommands since the infrastructure will call
it automatically; however, if you interrupt the normal flow of mode processing, you must call
issueCommands to complete the processing. For example, if before issuing a command you want
to ask the user for permission to execute the command, you can post a warning dialog box from the
doCustomChecksmethod. In this example you must return False from the doCustomChecks
method to stop the command processing. The application will then wait for the user to make a
selection from the warning dialog box. When the user clicks a button in the warning dialog box,
you must catch the message sent by the dialog box to your form. If the user clicks Yes, you should
continue the command processing as shown in the following example:

7–5

Abaqus ID:
Printed on:

MODE PROCESSING

class MyForm(AFXForm):

ID_OVERWRITE = AFXForm.ID_LAST

def __init__(self, owner):

AFXForm.__init__(self, owner)
FXMAPFUNC(self, SEL_COMMAND,

self.ID_OVERWRITE, MyForm.onCmdOverwrite)
...

def doCustomChecks(self):

import os
if os.path.exists(self.fileNameKw.getValue()):

db = self.getCurrentDialog()
showAFXWarningDialog(db,

'File already exists.\n\nOK to overwrite?',
AFXDialog.YES|AFXDialog.NO, self,
self.ID_OVERWRITE)

return False

return True

def onCmdOverwrite(self, sender, sel, ptr):

if sender.getPressedButtonId() == \
AFXDialog.ID_CLICKED_YES:

self.issueCommands(writeToReplay=True,
writeToJournal=True)

return 1

Normally the GUI infrastructure takes care of sending commands to the kernel automatically
when the mode is committed. If you need to issue a command before the mode is committed, you
can call issueCommands yourself. In other cases you may want to send a command without
using the form’s infrastructure. You can send a command string directly to the kernel using the
sendCommand(cmd) method. For more information, see “Executing commands,” Section 6.3.

deactivate

After the mode has issued its commands successfully, it will call the deactivate method to
perform various cleanup tasks, unless the mode loops or an “Apply” button was pressed, in which
case the mode returns to wait for further input from the user. If you need to perform your own

7–6

Abaqus ID:
Printed on:

MODE PROCESSING

cleanup tasks for your mode, you can overwrite this method; but you should be sure to call the
base class method as well to ensure that the mode is terminated properly as shown in the following
example.

def deactivate(self):

Do your processing here

Call the base class method
AFXForm.deactivate(self)

cancel

If you need to cancel a mode programmatically, as opposed to the user clicking on a Cancel button,
you can call the mode’s cancelmethod, taking the default values for its arguments. The cancel
method will call the deactivate method, so the mode’s cleanup tasks will still be performed.

If you want to give the user a chance to confirm whether a mode should be cancelled, you can
have a bailout dialog invoked. If you are writing a form mode, you can specify the bailout flag
in the constructor of your dialog box. If you are writing a procedure mode, you should write the
checkCancel method. The return value of the checkCancel method determines if the user
will be prompted for confirmation when the procedure is cancelled. For example:

def checkCancel(self):

if self.getCurrentStep() == self.step1:
If cancelled in the first step, do not
ask the user for confirmation to cancel.
return AFXProcedure.BAILOUT_OK

else:
After the first step, ask the user for
confirmation before cancelling.
return AFXProcedure.BAILOUT_NOTOK

By default when the context changes in Abaqus/CAE, all forms are cancelled; for example,
when the user opens a new database or changes the current model. If you have a form mode that
you do not want to be cancelled, you can overwrite the base class implementation in your form code
as follows:

def okToCancel(self):
return False

7–7

Abaqus ID:
Printed on:

MODE PROCESSING

7.2.5 Work in progress
If the command sent to the kernel takes more than a certain amount of time (approximately one second),
the GUI will lock and the busy cursor will be displayed. If you want to provide additional feedback about
the progress of your command, you can add work-in-progress commands to your kernel code. For more
information, see “Status commands,” Section 53.6 of the Abaqus Scripting Reference Guide.

The following statements illustrate how you can use themilestone command to provide feedback
on the progress of a volume computation:

numObjects = 4
for i in range(numObjects+1):

milestone('Computing total volume', 'parts', i, numObjects)
...
compute volume here
...

Figure 7–2 Displaying the progress of a command.

7.2.6 Command error handling
If the command sent to the kernel raises an exception, the mode infrastructure calls the
handleException method. The handleException posts an error dialog with the message
contained in the exception. Alternatively, if you want to perform your own error handling, you can
redefine the handleException method, as shown in the following example:

def handleException(self, exception):

exceptionType = exception[0]
exceptionValue = exception[1]

Do some special error handling here

Post an error dialog
#

7–8

Abaqus ID:
Printed on:

FORM MODES

db = self.getCurrentDialog()
showAFXErrorDialog(db, str(exceptionValue))

7.3 Form modes

A form mode gathers input from the user using one or more dialog boxes. This section describes the two
methods used by forms for posting dialog boxes. The following topics are covered:

• “Form example,” Section 7.3.1
• “Form constructor,” Section 7.3.2
• “getFirstDialog,” Section 7.3.3
• “getNextDialog,” Section 7.3.4
• “Collecting input from the GUI,” Section 7.3.5

7.3.1 Form example

The following example illustrates how to write a form mode. This first example contains only one dialog
box; a subsequent example will extend this form to include multiple dialog boxes.

from abaqusGui import *
from plateDB import PlateDB

class PlateForm(AFXForm):

#~~~
def __init__(self, owner):

AFXForm.__init__(self, owner)

self.cmd = AFXGuiCommand(self, 'Plate', 'examples')
self.nameKw = AFXStringKeyword(self.cmd, 'name', True)
self.widthKw = AFXFloatKeyword(self.cmd, 'width', True)
self.heightKw = AFXFloatKeyword(self.cmd, 'height', True)

#~~~
def getFirstDialog(self):

self.cmd.setKeywordValuesToDefaults()
return PlateDB(self)

7–9

Abaqus ID:
Printed on:

FORM MODES

7.3.2 Form constructor
You begin writing a form mode by deriving a new class from AFXForm. In the body of the AFXForm
constructor you must call the base class constructor and pass in the owner, which is the module or toolset
GUI to which this form belongs.

You then define the commands and keywords that the mode will use. The keywords are stored as
members of the mode so that they can be accessed by dialog boxes. If you set registerQuery=True in the
AFXGuiCommand constructor, the mode will query the kernel object specified by the command when it
is activated and will automatically set the values of the command’s keywords. For more information, see
“Keeping the GUI and commands up-to-date,” Section 6.5.3. If there is no kernel object associated with
your command (for example, when creating a new object), you can set the keyword values by specifying
a default value in the constructor.

If you have a default object that you want to use to reestablish default values for the dialog box, you
can use the mode’s registerDefaultsObject method to register an object whose values will be
queried when the user presses theDefaults button in the dialog box. For more information, see “Defaults
objects,” Section 6.5.16.

By default, dialog boxes are posted as modeless or nonmodal. You can change the behavior by
calling setModal(True) to have a dialog box posted as modal. In most cases you set the behavior
only once; however, you can change the behavior as often as needed by calling the setModal method
in the getFirstDialog or getNextDialog methods. For more information, see “Modal versus
modeless,” Section 5.2.

7.3.3 getFirstDialog
You must write the getFirstDialog method for your mode. The getFirstDialog method
should return the first dialog box of the mode. In “Form example,” Section 7.3.1, a pointer to the form
is passed into the dialog box constructor. The dialog box will use this pointer to access the mode’s
keywords.

If you want the same default values to appear every time you post the dialog box, you must call the
setKeywordValuesToDefaults() method before returning the dialog box, as shown in “Form
example,” Section 7.3.1.

7.3.4 getNextDialog
If your mode contains more than one dialog box, you must write the getNextDialog method
in addition to the getFirstDialog method. The previous dialog box is passed into the
getNextDialog method so that you can determine where the user is in the sequence of dialog boxes
and act accordingly. The getNextDialog method should return the next dialog box in the sequence,
or it should return None to indicate that it has finished collecting input from the user. The following

7–10

Abaqus ID:
Printed on:

FORM MODES

example is a modified version of the example in “getFirstDialog,” Section 7.3.3, that illustrates how
inputs are collected from the user in a series of three dialog boxes rather than just one:

def getFirstDialog(self):

self.dialog1 = PlateDB1(self)
return self.dialog1

def getNextDialog(self, previousDb):

if previousDb == self.dialog1:
self.dialog2 = PlateDB2(self)
return self.dialog2

elif previousDb == self.dialog2:
self.dialog3 = PlateDB3(self)
return self.dialog3

else:
return None

7.3.5 Collecting input from the GUI

To collect input from the user via the GUI, the keywords defined in themodemust be connected towidgets
in the dialog box. The AFXDataDialog class takes a mode argument in its constructor. Because the
form stores keywords, the dialog box can access these keywords and assign them to be targets of widgets
in the dialog box. As a result, the GUI can update the keywords; or, if the kernel is updated while the
dialog box is posted, the keywords can update the GUI. For more information, see Chapter 5, “Dialog
boxes.” The following example shows how the form’s keywords are connected to the widgets in the
dialog box:

class PlateDB(AFXDataDialog):

def __init__(self, mode):

AFXDataDialog.__init__(self, mode, 'Create Plate',
self.OK|self.CANCEL, DIALOG_ACTIONS_SEPARATOR)

va = AFXVerticalAligner(self)
AFXTextField(va, 15, 'Name:', mode.nameKw, 0)
AFXTextField(va, 15, 'Width:', mode.widthKw, 0)
AFXTextField(va, 15, 'Height:', mode.heightKw, 0)

7–11

Abaqus ID:
Printed on:

PROCEDURE MODES

7.4 Procedure modes

A procedure consists of a series of steps that collect input from the user. The following topics are covered
in this section:

• “Procedure example,” Section 7.4.1
• “Procedure constructor,” Section 7.4.2
• “getFirstStep,” Section 7.4.3
• “getNextStep,” Section 7.4.4
• “getLoopStep,” Section 7.4.5
• “AFXDialogStep,” Section 7.4.6

7.4.1 Procedure example
Steps in a procedure are posted using the following methods:

• getFirstStep

• getNextStep

• getLoopStep

The following types of steps are available for use in procedures:

• AFXDialogStep. This step provides an interface to a dialog box.

• AFXPickStep. This step provides an interface to allow picking entities in the viewport.

The following example shows how to write a simple, one-step procedure mode that uses a dialog
box step. Subsequent examples will extend this example to show how to use more steps.

from abaqusGui import *
from plateDB import PlateDB

class PlateProcedure(AFXProcedure):

#~~~
def __init__(self, owner):

AFXProcedure.__init__(self, owner)

self.cmd = AFXGuiCommand(self, 'Plate', 'examples')
self.nameKw = AFXStringKeyword(self.cmd, 'name', True)
self.widthKw = AFXFloatKeyword(self.cmd, 'width', True)
self.heightKw = AFXFloatKeyword(self.cmd, 'height', True)

7–12

Abaqus ID:
Printed on:

PROCEDURE MODES

#~~
def getFirstStep(self):

self.cmd.setKeywordValuesToDefaults()
db = PlateDB(self)
return AFXDialogStep(self, db)

7.4.2 Procedure constructor

You begin writing a procedure mode by deriving a new class from AFXProcedure. In the body of the
AFXProcedure constructor you must call the base class constructor and pass in the owner, which is
the module or toolset GUI to which this procedure belongs. Optionally, you can pass in a value for the
type of procedure. The default value for the type is NORMAL. The type defines what happens when a
new procedure is activated while another procedure is currently executing.

The type of a procedure can be either NORMAL or SUBPROCEDURE. When a normal procedure
is activated, it cancels any procedure that is currently executing. When a subprocedure is activated, it
suspends a normal procedure or cancels another subprocedure. If a procedure is suspended, it resumes
upon the completion of the subprocedure.

View procedures (for example, pan, rotate, and zoom) are special types of procedures that cannot be
suspended. View procedures are always cancelled when another procedure is activated, and they always
suspend any currently executing procedure when they are activated.

By default, procedures are identified by the infrastructure using their class name. If you need to
have multiple instances of a procedure executing at the same time, you will need to distinguish their
names to the infrastructure by calling the setModeName method.

After you have derived a new class from AFXProcedure, you define the commands and keywords
needed for the mode. The keywords are stored as members of the mode so that they can be accessed
by steps. If you set registerQuery=True in the AFXGuiCommand constructor, the mode will query
the kernel object specified by the command when it is activated and automatically set the values of
the command’s keywords. For more information, see “Keeping the GUI and commands up-to-date,”
Section 6.5.3. If there is no kernel object associated with your command (for example, when creating a
new object), you can set the keyword values by specifying a default value in their constructor.

If you have a default object that you want to use to reestablish default values for a dialog box, you
can use the mode’s registerDefaultsObject method to register an object whose values will be
queried when the user presses theDefaults button in the dialog box. For more information, see “Defaults
objects,” Section 6.5.16.

By default, dialog boxes are posted as modeless. You can post a dialog box as modal by calling
self.setModal(True). In most cases you set the modality only once in the mode; however, you
can change the modality as often as needed by calling the setModalmethod in the getFirstDialog
or getNextDialog methods. For more information, see “Modal versus modeless,” Section 5.2.

7–13

Abaqus ID:
Printed on:

PROCEDURE MODES

7.4.3 getFirstStep
You must always write the getFirstStep method for your mode. The getFirstStep method
should return the first step of the mode. In “Procedure example,” Section 7.4.1, a pointer to the procedure
is passed into the dialog box constructor. The dialog box will use this pointer to access the mode’s
keywords.

If you want the same default values to appear every time you post the dialog box, you must call
the setKeywordValuesToDefaults() method before returning the dialog box, as shown in
“Procedure example,” Section 7.4.1.

7.4.4 getNextStep
If your mode contains more than one step, you must write the getNextStep method in addition to the
getFirstStep method. The previous step is passed into the getNextStep method so that you can
determine where the user is in the sequence of steps and act accordingly. The getNextStep method
should return the next step in the sequence, or it should return None to indicate that it has finished
collecting input from the user. The following example, which is a modified version of the example in
“Procedure example,” Section 7.4.1, illustrates how inputs are collected from the user in a series of three
steps rather than just one:

#~~
def getFirstStep(self):

self.cmd.setKeywordValuesToDefaults()
self.plateWidthDB = None
self.plateHeightDB = None
db = PlateNameDB(self)
self.step1 = AFXDialogStep(self, db)
return self.step1

#~~
def getNextStep(self, previousStep):

if previousStep == self.step1:
if not self.plateWidthDB:

self.plateWidthDB = PlateWidthDB(self)
self.step2 = AFXDialogStep(self, self.plateWidthDB)
return self.step2

elif previousStep == self.step2:

7–14

Abaqus ID:
Printed on:

PROCEDURE MODES

if not self.plateHeightDB:
self.plateHeightDB = PlateHeightDB(self)

self.step3 = AFXDialogStep(self, self.plateHeightDB)
return self.step3

else:
return None

7.4.5 getLoopStep
If you want your procedure to loop, you must write the getLoopStep method. The getLoopStep
method is defined in the base class to return None, indicating that the mode will be run through a single
time. You can redefine the getLoopStepmethod and return a step to which the procedure should loop
back. The following example shows how you can make the procedure shown in the previous section
loop back to the first step after it has completed the last step:

def getLoopStep(self):
return self.step1

7.4.6 AFXDialogStep
The AFXDialogStep class allows you to post a dialog box during a procedure. To create a dialog
step, you must supply the procedure, a dialog box, and, optionally, a prompt for the prompt line. If you
do not supply a prompt, Abaqus uses a default prompt of Fill out the dialog box title
dialog. The following is an example of a dialog step in a single step procedure:

def getFirstStep(self):

db = PlateDB(self)
prompt = 'Enter plate dimensions in the dialog box'
return AFXDialogStep(self, db, prompt)

In most cases a procedure will have more than one step. Since a procedure has the ability to back up
to previous steps, you must write procedures that do not construct dialog boxes more than once during the
procedure. You can prevent a procedure from constructing dialog boxes more than once by initializing
procedure members and then checking the members during getNextStep, as shown in the following
example:

def getFirstStep(self):

self.plateWidthDB = None
self.plateHeightDB = None
db = PlateNameDB(self)

7–15

Abaqus ID:
Printed on:

PICKING IN PROCEDURE MODES

self.step1 = AFXDialogStep(self, db)
return self.step1

def getNextStep(self, previousStep):

if previousStep == self.step1:
if not self.plateWidthDB:

self.plateWidthDB = PlateWidthDB(self)
self.step2 = AFXDialogStep(self, self.plateWidthDB)
return self.step2

elif previousStep == self.step2:
if not self.plateHeightDB:

self.plateHeightDB = PlateHeightDB(self)
self.step3 = AFXDialogStep(self, self.plateHeightDB)
return self.step3

else:
return None

7.5 Picking in procedure modes

This section describes picking in procedure modes. The following topics are covered:

• “AFXPickStep,” Section 7.5.1
• “Refining what the user can select,” Section 7.5.2
• “Nonpickable entities,” Section 7.5.3
• “Highlighting while selecting,” Section 7.5.4
• “Selection options,” Section 7.5.5
• “Allowing the user to type in points,” Section 7.5.6
• “Picking by angle,” Section 7.5.7
• “AFXOrderedPickStep,” Section 7.5.8
• “Limitations while selecting,” Section 7.5.10

7.5.1 AFXPickStep
The AFXPickStep class allows the user to pick entities in the current viewport. You must create the
keywords associated with pick steps in the same order as the pick steps in which the keywords are used.

7–16

Abaqus ID:
Printed on:

PICKING IN PROCEDURE MODES

For example, if you have two pick steps, you must create the keyword passed into the first pick step
before you create the second keyword, which is passed into the second pick step. Creating the keywords
associated with pick steps in the same order as the pick steps in which the keywords are used ensures
that the necessary setup commands are issued in the proper order for the command to work correctly.

You can specify many parameters when picking items from the viewport. You specify some of
these parameters in the AFXPickStep constructor, and you specify other parameters by calling various
methods of the pick step.

To construct a pick step, you must at least supply the following:

• A procedure
• An object keyword
• A prompt for the prompt line
• A bit flag or flags specifying which type of entities may be picked

The following example shows how you can write a pick step:

class MyProcedure(AFXProcedure):

def __init__(self, owner):

AFXProcedure.__init__(self, owner)

self.cmd = AFXGuiCommand(self, 'myMethod', 'myObject')
self.nodeKw = AFXObjectKeyword(self.cmd, 'node', True)

def getFirstStep(self):

return AFXPickStep(self, self.nodeKw,
'Select a node', AFXPickStep.NODES)

Optional parameters in the constructor allow you to specify the following:

• Whether the user should pick one entity or one or more entities (AFXPickStep.ONE, the default, or
AFXPickStep.MANY)

• The highlight level (1–4)
• The sequence style (AFXPickStep.ARRAY, the default, or AFXPickStep.TUPLE)
If the user is allowed to pick only one entity, the procedure will automatically advance to the next

step after the user picks an entity; however, the user can back up to the previous step to change the
selection. If the user is allowed to pick one or more entities, the user must commit the selections by
clicking mouse button 2 or by clicking the Done button on the prompt line.

The highlight level controls the color of the selected entities. In some procedures, different colors
are used between steps to distinguish the selections.

7–17

Abaqus ID:
Printed on:

PICKING IN PROCEDURE MODES

The sequence style controls how a sequence of picked objects is represented in the command
string. If the sequence style is AFXPickStep.ARRAY, the picked objects will be represented as
the concatenation of slices of arrays; for example, v[3:4] + v[5:8], where v is a vertex array. You
cannot use the AFXPickStep.ARRAY sequence style to pick a combination of entities with multiple
types because only objects of the same type can be concatenated. In addition, you cannot use
the AFXPickStep.ARRAY sequence style to pick interesting points because interesting points are
constructed on-the-fly and are not accessible from slices of an array.

If the sequence style is AFXPickStep.TUPLE, the picked objects will be represented as a tuple of
individual objects; for example, (v[3], v[5], v[6], v[7]). The style you choose depends on the format
accepted by the command that you intend to issue. Some commands in Abaqus/CAE accept both styles,
but some accept only one or the other. For further details on the arguments to the AFXPickStep
constructor, see the Abaqus GUI Toolkit Reference Guide.

7.5.2 Refining what the user can select

A refinement qualifies the types of pickable entities specified in the AFXPickStep constructor. The
following example shows how to select only straight edges:

step = AFXPickStep(self, self.edgeKw, 'Select a straight edge',
AFXPickStep.EDGES)

step.setEdgeRefinements(AFXPickStep.STRAIGHT)

By default, no refinements are set. For a complete list of refinements, see the Abaqus GUI Toolkit
Reference Guide.

7.5.3 Nonpickable entities

By default, the procedure mode prevents previously selected geometric entities from being
selected twice in the same procedure. If you do not want this behavior, you can call the
allowRepeatedSelections method. The following example shows how to allow repeated
selections:

step = AFXPickStep(self, self.edgeKw, 'Select a straight edge',
AFXPickStep.EDGES)

step.allowRepeatedSelections(True)

Disallowing repeated picks works only for geometry items such as vertices, edges, and faces; it does not
work for nodes and elements.

7–18

Abaqus ID:
Printed on:

PICKING IN PROCEDURE MODES

7.5.4 Highlighting while selecting
The procedure mode clears all highlighting when the user cancels a procedure. In addition, the procedure
mode clears highlighting in the current step before backing up. The color of highlighted entities is
controlled by the highlight level set in the AFXPickStep constructor.

7.5.5 Selection options
The Selection Options dialog box is automatically available in any pick step. The available options in
the Selection Options dialog box are automatically configured, based on the types of entities that the
user is picking. For example, if the user is picking only faces, only Faces appears in the combo box in the
dialog box. Similarly, if the user is picking a single entity, the drag shape and drag scope buttons are not
available. As a result, procedures generally do not need to set the available selection options explicitly.
If you need to set these options, you can use the procedure’s setSelectionOptions method. You
must set the procedure selection options prior to creating the first pick step. For more information, see
the Abaqus GUI Toolkit Reference Guide.

Normally a procedure will set these options only at the start of the procedure. However, during the
procedure the user may change the settings, and the modified settings will be retained from step to step
during the rest of the procedure.

7.5.6 Allowing the user to type in points
If you want to allow the user to type in the coordinates of a point as an alternative to picking
in the viewport, you can call the addPointKeyIn method and pass it a tuple keyword. The
addPointKeyIn method posts a text field on the prompt line. The type of the keyword passed into
the addPointKeyIn method determines what values are collected from the user; for example, two or
three values and whether those values are float or integer types. For example, in the constructor of your
procedure you could define an additional keyword as shown in the following code:

self.pointKw1 = AFXObjectKeyword(self.cmd, 'point', True)
self.pointKw2 = AFXTupleKeyword(self.cmd, 'point', True,

3, 3, AFXTUPLE_TYPE_FLOAT)

In one of the steps of your procedure you could add a key-in option, as shown below:

step = AFXPickStep(self, self.pointKw1, 'Select a point',
AFXPickStep.POINTS)

step.addPointKeyIn(self.pointKw2)

If a step has a key-in text field, the user enters some values in the text field, and the user commits the
values by pressing [Enter], those values will be used in the command. Alternatively, if a step has a key-in

7–19

Abaqus ID:
Printed on:

PICKING IN PROCEDURE MODES

text field and the user selects an entity in the viewport, that entity will be used in the command, regardless
of whether anything was typed in the text field. The mode automatically takes care of deactivating
whichever keyword needs to be deactivated based on these rules. In the previous example, if the user
types in a point, self.pointKw1 will be deactivated and self.pointKw2 will be activated. In addition,
self.pointKw2 will contain the value entered by the user.

7.5.7 Picking by angle

Picking by face angle or by edge angle is always enabled when appropriate. For example, picking by
face angle is enabled when the user is picking faces. You cannot disable picking by angle.

7.5.8 AFXOrderedPickStep

The AFXOrderedPickStep is a special pick step that preserves the order in which the user picks entities.
For example, when picking four nodes to create a quad element, the order in which the user picks the
nodes is important and must be preserved during picking. The user must pick the entities one at a time
and cannot drag select them. In addition, because this is a single step that treats the picked entities as a
single pick, the user cannot backup any of the individual picks. The step continues to loop until the user
clicks the mouse button two.

7.5.9 Prepopulating a pick step

In some cases you may want to prepopulate a pick step with some selections. For example, let’s say that
you have a procedure that creates an object that includes selecting a region of the model and you want to
allow the user to edit that object. In the edit procedure you will want to prepopulate the region selection
step with the selection that the user originally made when creating the object. You can do this by adding
a set of entities to the pick step as shown below:

step = AFXPickStep(self, self.nodesKw, 'Select some nodes',
AFXPickStep.NODES, AFXPickStep.MANY, 1, AFXPickStep.ARRAY)

step.addNodeSetSelection('NodeSet-1')

There are similar methods for adding entities from geometry sets (addGeometrySetSelection),
element sets (addElementSetSelection), and surfaces (addSurfaceSelection). When this
step is executed the added entities will automatically be highlighted, and the user can add or remove
from that selection.

7–20

Abaqus ID:
Printed on:

PICKING IN PROCEDURE MODES

7.5.10 Limitations while selecting

The following limitations apply to picking procedures:

• The following entities cannot be picked:
– Sets

– Surfaces

• Picking more than one kind of entity at the same time is not supported for a sequence style of
ARRAY; for example, the user cannot pick nodes and elements in the same step.

• Picking Features or Instances cannot be combined with picking other types of entities. In addition,
a sequence style of ARRAY is not supported.

• There is no support for unselecting entities that belong to selected entities. For example, when the
user selects a face, Abaqus also selects all the edges belonging to the selected face. The user cannot
unselect one of those edges.

• Probing is not supported.
These limitations may be removed in a future release of the Abaqus GUI Toolkit.

7–21

Abaqus ID:
Printed on:

Part V: GUI modules and toolsets
This part describes how you can create your own modules and toolsets. This part also describes how you can
modify an existing Abaqus/CAE module or toolset. The following topics are covered:

• Chapter 8, “Creating a GUI module”
• Chapter 9, “Creating a GUI toolset”
• Chapter 10, “Customizing an existing module or toolset”

Abaqus ID:
Printed on:

GUI MODULE EXAMPLE

8. Creating a GUI module

This section describes how you can create a GUI module. The following topics are covered:

• “An overview of creating a GUI module,” Section 8.1
• “GUI module example,” Section 8.2
• “Registering a GUI module,” Section 8.3
• “Switching to a GUI module,” Section 8.4

8.1 An overview of creating a GUI module

To create a new GUI module, you must follow these steps:

• Derive a new class from a module base class.
• Create menus in the menu bar.
• Create icons in the toolbar. This step is optional.
• Create icons in the toolbox. This step is optional.
• Create modes to collect input from the user and issue commands. Modes include procedures and
dialog boxes.

• Create methods to handle any special behavior not handled by the module’s modes. This step is
optional.

These steps are described in detail in the following sections.

8.2 GUI module example

This section includes the following topics:

• “Deriving a new module class,” Section 8.2.1
• “Tree tabs,” Section 8.2.2
• “Menu bar items,” Section 8.2.3
• “Toolbar items,” Section 8.2.4
• “Toolbox items,” Section 8.2.5
• “Registering toolsets,” Section 8.2.6
• “Kernel module initialization,” Section 8.2.7
• “Instantiating the GUI module,” Section 8.2.8
The AFXModuleGui base class provides various module infrastructure support functions. For

example, the AFXModuleGui base class keeps track of the module’s menus, along with its toolbar and

8–1

Abaqus ID:
Printed on:

GUI MODULE EXAMPLE

toolbox icons. As a result, the menus, toolbars, and icons can be swapped in and out automatically as
the user changes modules.

The following example shows how to create a module GUI; subsequent sections explain the details
of this example.

from abaqusGui import *
from myModes import mode_1, mode_2, mode_3
from myIcons import *
from myToolsetGui import MyToolsetGui
class MyModuleGui(AFXModuleGui):

#~~~
def __init__(self):

Construct the base class
#
mw=getAFXApp().getAFXMainWindow()
AFXModuleGui.__init__(self, moduleName='My Module',

displayTypes=AFXModuleGui.PART)
mw.appendApplicableModuleForTreeTab('Model',

self.getModuleName())
mw.appendVisibleModuleForTreeTab('Model',

self.getModuleName())

Menu items
#
menu = AFXMenuPane(self)
AFXMenuTitle(self, '&Menu1', None, menu)
AFXMenuCommand(self, menu, '&Item 1', None, mode_1,

AFXMode.ID_ACTIVATE)

subMenu = AFXMenuPane(self)
AFXMenuCascade(self, menu, '&Submenu', None, subMenu)
AFXMenuCommand(self, subMenu, '&Subitem 1', None, mode_2,

AFXMode.ID_ACTIVATE)

Toolbar items
#
group = AFXToolbarGroup(self)
icon = FXXpmIcon(getAFXApp(), iconData1)
AFXToolButton(group, '\tTool Tip', icon, mode_1,

AFXMode.ID_ACTIVATE)

8–2

Abaqus ID:
Printed on:

GUI MODULE EXAMPLE

Toolbox items
#
group = AFXToolboxGroup(self)
icon = FXXPMIcon(getAFXApp(), iconData2)
AFXToolButton(group, '\tTool Tip’, icon, mode_1,

AFXMode.ID_ACTIVATE)

popup = FXPopup(getAFXApp().getAFXMainWindow())
AFXFlyoutItem(popup, '\tFlyout Button1', squareIcon,

mode_1, AFXMode.ID_ACTIVATE)
AFXFlyoutItem(popup, '\tFlyout Button 2', circleIcon,

mode_2, AFXMode.ID_ACTIVATE)
AFXFlyoutItem(popup, '\tFlyout Button 3', triangleIcon,

mode_3, AFXMode.ID_ACTIVATE)
AFXFlyoutButton(group, popup)

Register toolsets
#
self.registerToolset(MyToolsetGui(),

GUI_IN_MENUBAR|GUI_IN_TOOL_PANE)

#~~~
def getKernelInitializationCommand(self):

return 'import myModule'

Instantiate the module
#
MyModuleGui()

8.2.1 Deriving a new module class
To create your own module GUI, you begin by deriving a new class from the AFXModuleGui base
class. Alternatively, if there is another module GUI class that provides most of the functionality that you
want, you can begin by deriving from that class and then make modifications. For more information, see
Chapter 10, “Customizing an existing module or toolset.”

Inside the new class constructor body, you must call the base class constructor and pass self
as the first argument. The moduleName is a string used by the GUI infrastructure to identify
this module. displayTypes are the flag or flags that specify the type of object that is being
displayed in this module. Possible values are AFXModuleGui.PART, AFXModuleGui.ASSEMBLY,
AFXModuleGui.ODB, AFXModuleGui.XY_PLOT, and AFXModuleGui.SKETCH. If you specify

8–3

Abaqus ID:
Printed on:

GUI MODULE EXAMPLE

AFXModuleGui.ASSEMBLY, your module must import the assembly kernel module because the
assembly kernel module is required to initialize some assembly display options. For more information,
see “Kernel module initialization,” Section 8.2.7.

8.2.2 Tree tabs
By default, the tabs in the TreeToolsetGui are not visible when the user switches into
a custom module. To specify that a tab should be visible or applicable to a module, use the
appendApplicableModuleForTreeTab and appendVisibleModuleForTreeTab
methods. The example in “GUI module example,” Section 8.2, specifies that the Model tab will be
applicable and visible in “My Module.” If the user is in the Part module and switches to “My Module,”
the Results tab will be hidden, and the Model tab will be made current if it was not already current.

8.2.3 Menu bar items
Menu bar items consist of a menu title that controls a menu pane. The menu pane, in turn, contains menu
commands. Menu commands are buttons that invoke modes.

The example in “GUI module example,” Section 8.2, creates a top-level menu pane that contains a
submenu. The menu commands in the submenu specify the mode that the menu command will invoke
by sending the mode an activate message. For more information, see “Mode processing,” Section 7.2.
Figure 8–1 shows the menus and submenus created by the example.

Figure 8–1 Creating menus.

8.2.4 Toolbar items
Toolbar items are displayed across the top of the main window under the menu bar and consist of a button
that contains an icon. Toolbar items are placed in a group that is shown only when its module or toolset
is current. The group also contains a separator that provides a visual distinction from the other groups
of icons in the toolbar.

The example in “GUI module example,” Section 8.2, creates a toolbar group and adds a button to
the toolbar. The new button invokes the same mode that will be invoked by the first menu item in the
example. For more information, see “Mode processing,” Section 7.2.

8–4

Abaqus ID:
Printed on:

GUI MODULE EXAMPLE

8.2.5 Toolbox items
Toolbox items are displayed along the left edge of the main window and consist of a button that contains
an icon. As with toolbar items, toolbox items are placed in a group that is shown only when its module
or toolset is current. Similarly, toolbox groups are spaced apart to provide a visual distinction from the
other groups of icons in the toolbox.

The example in “GUI module example,” Section 8.2, creates a toolbox group and adds a button to
the toolbox. The new button invokes the same mode as the first menu item in the example.

Toolboxes can also contain flyout menus. When the user presses mouse button 1 on the flyout button
and holds it down for a certain time span, a flyout button displays a popup window containing buttons.
If the user just quickly clicks mouse button 1 on the flyout button, the flyout popup is not displayed and
the flyout button acts as a regular button. A flyout button displays an icon for the current function along
with a triangle in the lower right corner. Figure 8–2 shows the flyout buttons created by the example.

Figure 8–2 Toolbox flyout buttons.

8.2.6 Registering toolsets
Modules can include toolsets simply by registering them. Toolsets that are registered with a module
will be available when that module is the current module. To register a toolset, you supply a pointer to
the toolset along with bit flags that specify where in the GUI the toolset has defined components. The
following locations are supported:

FLAG LOCATION IN GUI

GUI_IN_NONE Toolset has no components in standard locations.

GUI_IN_MENUBAR Toolset has components in the menu bar.

GUI_IN_TOOL_PANE Toolset has components in the Tools menu pull down pane.

GUI_IN_TOOLBAR Toolset has components in the toolbar.

GUI_IN_TOOLBOX Toolset has components in the toolbox.

8–5

Abaqus ID:
Printed on:

REGISTERING A GUI MODULE

The example in “GUI module example,” Section 8.2, registers a toolset that contains elements in the
main menu bar and the Tools menu.

If you do not specify a flag in an area in which you have created some GUI components, those
components will not be shown in the application.

8.2.7 Kernel module initialization
In general, a GUI module is designed to provide an interface to a kernel module. After the GUI collects
input from the user, it constructs a command string that is sent to the kernel for processing. For the
command to be recognized on the kernel side, the appropriate kernel module must have been imported
before the command was sent.

When a GUI module is loaded for the first time, a special method named
getKernelInitializationCommand is executed. This method is empty in the
base class implementation, and it is up to you to write a method that returns the proper command that
will import the appropriate modules on the kernel side. The appropriate modules include any module
for which your GUI module can issue commands. If more than one module is required, you can separate
the statements by semi-colons or “\n” characters. To avoid name space conflicts with modules loaded
by Abaqus, you should use the import moduleName style for importing modules and not the from
moduleName import * style, as shown in the example in “GUI module example,” Section 8.2.

8.2.8 Instantiating the GUI module
The final step in the module GUI code is to construct the module. You can construct the module by
calling the module constructor at the end of the module GUI file. This will construct all the objects
defined in the constructor body For example,

MyModuleGui()

8.3 Registering a GUI module

To make a GUI module accessible to the GUI infrastructure, you must register the module in the main
window code. The register command takes two arguments: one for the name to be displayed in the
Module combo box in CAE, and a second that specifies the name of the module to import. For more
information, see “Registering modules,” Section 14.2.5. In most cases you register the module in the
main window code by calling the module constructor at the end of the module GUI file.

If the example shown in “GUI module example,” Section 8.2, resides in a file named
myModuleGui.py, myModuleGuimust be used as the second argument to the registerModule
method, as shown in the following statement:

Register modules
#
self.registerModule(

displayedName='My Module', moduleImportName='myModuleGui')

8–6

Abaqus ID:
Printed on:

SWITCHING TO A GUI MODULE

8.4 Switching to a GUI module

When the user selects a module from the Module list in the context bar, the GUI infrastructure does the
following:

• Calls the deactivate method of the current GUI module.
• Calls the activate method of the GUI module selected by the user.

You can write your own activate or deactivate methods if you need to perform any special
processing when entering or leaving a module. If you need to issue a command to the kernel when the
user changes modules, you must use the sendCommandString method of the AFXModuleGui
object to issue the command. If you do not use the sendCommandString method, the application
may hang while trying to process the command. You should enclose the statements that call the
sendCommandString method in a try block to catch any exceptions generated by the kernel
command.

To switch to a GUI module using a script, you can use the switchModule method. For example,
if you want to switch to your module upon application startup, you can add the following line to the
application startup file:

switchModule('My Module')

This line should appear just before the app.run() statement.
You can use the setSwitchModuleHook(function) method to set a callback function that will

be invoked when the user switches into a GUI module. Every time the user switches into a GUI module,
your function will be called and the name of the module will be passed into the function. For example,

def onModuleSwitch(moduleName):
if moduleName == 'Part':

Do part module tasks
elif moduleName == 'Mesh':

Do mesh module tasks
etc.

setSwitchModuleHook(onModuleSwitch)

8–7

Abaqus ID:
Printed on:

GUI TOOLSET EXAMPLE

9. Creating a GUI toolset

Toolsets are similar to modules, except that they can be used in more than one module. Toolsets typically
have less functionality than modules because toolsets specialize in performing a specific task, such as
partitioning. This section describes how you can create a GUI toolset. The following topics are covered:

• “An overview of creating a GUI toolset,” Section 9.1
• “GUI Toolset example,” Section 9.2
• “Creating toolset components,” Section 9.3
• “Registering toolsets,” Section 9.4

9.1 An overview of creating a GUI toolset

To create a new GUI toolset, you must follow these steps:

• Derive a new class from a toolset base class.
• Create menus in the menu bar. This step is optional.
• Create items in the Tools menu. This step is optional.
• Create buttons in the toolbar. This step is optional.
• Create buttons in the toolbox. This step is optional.
• Create modes to collect input from the user and to issue commands.

9.2 GUI Toolset example

The AFXToolsetGui base class provides various toolset infrastructure support functions. For
example, the AFXToolsetGui base class keeps track of the menus in a toolset, along with the
toolbar and toolbox buttons, so that they can be swapped in and out automatically as the user changes
modules. To create your own toolset GUI, you begin by deriving from the AFXToolsetGui class.
Alternatively, if there is another module GUI class that provides most of the functionality that you want,
you can begin by deriving from that class and then making modifications. For more information, see
Chapter 10, “Customizing an existing module or toolset.”

The following example shows how to create a new toolset class by deriving from
AFXToolsetGui:

from abaqusGui import *

class MyToolsetGui(AFXToolsetGui):

9–1

Abaqus ID:
Printed on:

REGISTERING TOOLSETS

#~~~
def __init__(self):

Construct the base class
#
AFXToolsetGui.__init__(self, toolsetName)
...

In the constructor of the new class you call the constructor of the base class. The AFXToolsetGui
class takes the following argument:

toolsetName

A String specifying the name of the toolset. The toolset name provides an identifier for the toolset.

9.3 Creating toolset components

You create menu, toolbar, and toolbox items in a toolset in the same way that you create those items in a
module. When you create menu, toolbar, and toolbox items in a module, the module is used as the parent.
In contrast, when you create a toolset component such as menu panes, the toolset is used as the parent
of the toolset component. The toolset is used as the parent because the components need to be managed
by the toolset when the toolset is swapped in and out of the GUI. For more information on creating these
components, see Chapter 8, “Creating a GUI module.”

9.4 Registering toolsets

You can register a toolset with the main window or with a module. If you register the toolset with the
main window, the toolset will be persistent throughout the session; for example, the File toolset is always
available in an Abaqus/CAE session. In contrast, if you register the toolset with a module, the toolset will
be swapped in and out with that module’s menus and icons; for example, the Datum toolset is available
in an Abaqus/CAE session only in selected modules. For more information, see “Registering toolsets,”
Section 8.2.6.

9–2

Abaqus ID:
Printed on:

MODIFYING AND ACCESSING Abaqus/CAE GUI MODULES AND TOOLSETS

10. Customizing an existing module or toolset

The previous sections describe how you can create a new module or toolset by starting from an empty
base class and adding all the functionality that you need. Alternatively, you may find that you want to
use most of the functionality of an existing module or toolset. If a suitable module or toolset exists, it
may be easier for you to derive a new module or toolset from it and then add or remove functionality
from it. This chapter describes how to make various modifications to an existing module or toolset. The
following topics are covered:

• “Modifying and accessing Abaqus/CAE GUI modules and toolsets,” Section 10.1
• “The File toolset,” Section 10.2
• “The Tree toolset,” Section 10.3
• “The Selection toolset,” Section 10.4
• “The Help toolset,” Section 10.5
• “An example of customizing a toolset,” Section 10.6

10.1 Modifying and accessing Abaqus/CAE GUI modules and toolsets

Deriving a new class to create modified Abaqus/CAE modules and toolsets allows you to customize
existing functions without changing the original functions. You can also access existing Abaqus/CAE
functions from within new dialogs that you create with the Abaqus GUI Toolkit. The following topics
are covered in this section:

• “Abaqus/CAE GUI modules and toolsets,” Section 10.1.1
• “Accessing Abaqus/CAE functions,” Section 10.1.2

10.1.1 Abaqus/CAE GUI modules and toolsets

The Abaqus GUI Toolkit is designed to allow you to add your own modules and toolsets. It is generally
not recommended that you modify Abaqus/CAE modules and toolsets because future changes to
Abaqus/CAE may “break” your application. However, if you do have a need to modify some of the
Abaqus/CAE modules or toolsets, you can make changes by deriving a new class from one of them and
then adding or removing components.

To derive a new class, you must know the appropriate class name and you must call that class’s
constructor in your constructor. The table below lists the class names and registered names for all the
Abaqus/CAE modules that are available in the Abaqus GUI Toolkit. You can import these class names
from abaqusGui.

10–1

Abaqus ID:
Printed on:

MODIFYING AND ACCESSING Abaqus/CAE GUI MODULES AND TOOLSETS

When you register a module derived from one of the Abaqus/CAE modules, you must use the name
shown in the table for the displayedName argument in the main window’s registerModule method.
If you do not use the name shown, some GUI infrastructure components may not function correctly.

Class name Name

PartGui “Part”

PropertyGui “Property”

AssemblyGui “Assembly”

StepGui “Step”

InteractionGui “Interaction”

LoadGui “Load”

MeshGui “Mesh”

OptimizationGui “Optimization”

JobGui “Job”

VisualizationGui “Visualization”

SketchGui ”Sketch”

When you register a toolset, you must specify in the registerToolset method in which
locations (the menu bar, the toolbar, or the toolbox) the toolset creates the widget. If you omit a toolset
location flag, the GUI for that toolset will not appear in that location. The table below shows the class
name for each of the Abaqus/CAE toolsets along with the flags that indicate the locations in which the
toolset creates the widgets. You can import these class names from abaqusGui.

To register the plug-in toolset, you call registerPluginToolset(); you do not use the
registerToolset method.

When you unregister a toolset, you must use the name shown in the table as the argument to the
module’s unregisterToolset method.

Class name Name Toolset locations

AmplitudeToolsetGui “Amplitude” GUI_IN_TOOL_PANE

AnnotationToolsetGui “Annotation” GUI_IN_MENUBAR | GUI_IN_TOOLBAR

CanvasToolsetGui “Canvas” GUI_IN_MENUBAR

CustomizeToolsetGui “Customize” GUI_IN_TOOL_PANE

DatumToolsetGui “Datum” GUI_IN_TOOLBOX |
GUI_IN_TOOL_PANE

10–2

Abaqus ID:
Printed on:

MODIFYING AND ACCESSING Abaqus/CAE GUI MODULES AND TOOLSETS

Class name Name Toolset locations

EditMeshToolsetGui “Mesh Editor” GUI_IN_TOOLBOX |
GUI_IN_TOOL_PANE

FileToolsetGui “File” GUI_IN_MENUBAR | GUI_IN_TOOLBAR

HelpToolsetGui “Help” GUI_IN_MENUBAR | GUI_IN_TOOLBAR

ModelToolsetGui “Model” GUI_IN_MENUBAR

PartitionToolsetGui “Partition” GUI_IN_TOOLBOX |
GUI_IN_TOOL_PANE

QueryToolsetGui “Query” GUI_IN_TOOLBAR |
GUI_IN_TOOL_PANE

RegionToolsetGui “Region” GUI_IN_TOOL_PANE

RepairToolsetGui “Repair” GUI_IN_TOOLBOX |
GUI_IN_TOOL_PANE

SelectionToolsetGui “Selection” GUI_IN_TOOLBAR

TreeToolsetGui “Tree” GUI_IN_MENUBAR

ViewManipToolsetGui “View
Manipulation”

GUI_IN_MENUBAR | GUI_IN_TOOLBAR

For an example of how to register the toolsets and modules used by Abaqus/CAE, see “Main window
example,” Section 14.2.1. The following statements show how you could add your own toolset to the
Visualization module:

File myVisModuleGui.py:

from abaqusGui import *
from myToolsetGui import MyToolsetGui

class MyVisModuleGui(VisualizationGui):

def __init__(self):

Construct the base class.
#
VisualizationGui.__init__(self)

Register my toolset.

10–3

Abaqus ID:
Printed on:

MODIFYING AND ACCESSING Abaqus/CAE GUI MODULES AND TOOLSETS

#
self.registerToolset(MyToolsetGui(),

GUI_IN_MENUBAR|GUI_IN_TOOLBOX)

MyVisModuleGui()

File myMainWindow.py:

from abaqusGui import *

class MyMainWindow(AFXMainWindow):

def __init__(self, app, windowTitle=''):

...
self.registerModule('Visualization',

'myVisModuleGui')
...

If you derive a toolset from an Abaqus/CAE toolset, you must construct that toolset using the
makeCustomToolsetsmethod of AFXMainWindow. You must use the makeCustomToolsets
method to ensure that the toolset is created at the appropriate time during application startup. This
will avoid any conflicts with Abaqus/CAE modules that also make use of the module. For
example, if you derive a new toolset from the Datum toolset, you must create the new toolset in
makeCustomToolsets. This approach is illustrated in the following example. The new toolset will
also appear in the Part module in place of the standard Datum toolset.

In your main window file:

class MyMainWindow(AFXMainWindow):

def __init__(self, app, windowTitle=''):

...
def makeCustomToolsets(self):

from myDtmToolsetGui import MyDtmGui
Store the toolset as a member of the main window if
you want to register it in one of your modules too.
#
self.myDtmGui = MyDtmGui()

10–4

Abaqus ID:
Printed on:

THE FILE TOOLSET

In your module GUI file:

class MyModuleGui(AFXModuleGui):

def __init__(self):

...
mw = getAFXApp().getAFXMainWindow()
self.registerToolset(mw.myDtmGui,

GUI_IN_TOOL_PANE|GUI_IN_TOOLBOX)

10.1.2 Accessing Abaqus/CAE functions
If you want to launch an Abaqus/CAE function from your own dialog, you can do so by
connecting the appropriate target and selector to one of your buttons. You can get the target
and selector for a particular function by using the main window’s getTargetFromFunction and
getSelectorFromFunction methods. For example:

mainWindow = getAFXApp().getAFXMainWindow()
target = mainWindow.getTargetFromFunction('Part->Create')
selector = mainWindow.getSelectorFromFunction('Part->Create')
FXButton(self, 'Create Part...', tgt=target, sel=selector)

The list of valid function names can be found in the Functions tab page in the Tools→Customize
dialog box.

10.2 The File toolset

The File toolset contains a method called getPrintForm that allows you to access the form that
posts the Print dialog box. See “Print dialog box,” Section 5.7.2, for an example of how to use the
getPrintForm method.

In addition, the Abaqus GUI Toolkit provides two virtual methods that you can modify to change the
behavior of your application when a database is opened. Normally, after an output database is opened,
Abaqus/CAE will enter the Visualization module. Similarly, if you are in the Visualization module and
you open a model database, Abaqus/CAE enters the first module listed in theModule list in context bar.
To change this behavior, you can overwrite the switchToOdbModule and switchToMdbModule
methods. These methods return True if they are successful. For example:

from abaqusGui import *

class MyFileToolsetGui(FileToolsetGui):

10–5

Abaqus ID:
Printed on:

THE TREE TOOLSET

def switchToMdbModule(self):

Always switch to the Property module
currentModuleGui = getCurrentModuleGui()
if currentModuleGui and \

currentModuleGui.getModuleName() != 'Property':
switchModule('Property')

return True

def switchToOdbModule(self):

Do not switch modules
return True

10.3 The Tree toolset

The Tree toolset provides a tabbed area that contains the Model Tree and the Results Tree in
Abaqus/CAE. For more information, see “Working with the Model Tree and the Results Tree,”
Section 3.5 of the Abaqus/CAE User’s Guide. The Tree toolset contains the following methods that you
can use to customize the appearance of the tabbed area:

• The makeModelTab method creates the tab that contains the Model Tree. The name of the tab is
“Model.”

• The makeMaterialLibraryTabmethod creates the tab that contains theMaterial Library. The
name of the tab is “Material Library.”

• The makeResultsTab method creates the tab that contains the Results Tree. The name of the
tab is “Results.”

• The makeTabs method calls all of the methods listed above.
In addition, the main window has an appendTreeTab method that creates a new tab item in the

tabbed area and returns a vertical frame into which you can add your widgets. If you want to simply add
a tab after the Model and Results tabs, you can use appendTreeTab from within your custom code.
However, if you want to change the order of the tabs or remove one of the standard tabs, you must derive
your own toolset from the Tree toolset. For example:

class MyTreeToolsetGui(TreeToolsetGui):

def makeTabs(self):

self.makeModelTab()
self.makeMyTab()

10–6

Abaqus ID:
Printed on:

THE SELECTION TOOLSET

self.makeMaterialLibraryTab()
self.makeResultsTab()

def makeMyTab(self):

vf = getAFXApp().getAFXMainWindow().appendTreeTab(
'My Tab', 'My Tab')

FXLabel(vf, 'This is my tab item')

The first argument to the appendTreeTab method is the text that you want to show up in the tab
button. The second argument is the name of the tab, which is used for identification purposes in various
application programming interfaces, such as setCurrentTreeTab(name).

By default, when you create a tab it will be visible in all modules, and it will be applicable to
all modules. If you do not want your tab to be visible or applicable to all modules, you can use the
setApplicabilityForTreeTab and setVisibilityForTreeTab methods. When the user
switches to a new module, the application will check to see if the current tab is visible in and applicable
to the new module. If the tab is not visible, it will be hidden. If it is not applicable, the application will
search for the first tab that is applicable to the new module and make that tab current. For example:

def makeMyTab(self):

vf = getAFXApp().getAFXMainWindow().appendTreeTab(
'My Tab', 'My Tab')

getAFXApp().getAFXMainWindow().setApplicabilityForTreeTab(
'My Tab', 'Part, Property')

getAFXApp().getAFXMainWindow().setVisibilityForTreeTab(
'My Tab', 'Part, Property')

FXLabel(vf, 'This is my tab')

In this case, when the user is in the Part module, My Tab will be shown. If the user clicks on My Tab
to make it current and then switches to the Property module, My Tab will remain visible and current.
If the user switches to the Step module, My Tab will be hidden and the Model tab will become current
(because it has been defined as applicable to all modules except the Visualization module).

10.4 The Selection toolset

The Selection toolset provides a selection capability outside of any procedure. In other words, it allows
users to select objects and then invoke a procedure, instead of invoking the procedure and then selecting
the objects. Each module defines a set of entities that can be selected in that module. If you create your
own module, then you should set the appropriate selectable entities when your module gets activated.

10–7

Abaqus ID:
Printed on:

THE HELP TOOLSET

You can use the getToolset method of the main window to get the selection toolset, and then use the
setFilterTypes method of the selection toolset.

• setFilterTypes(types, defaultType)

Use the following flags for the types and defaultType arguments:

• SELECTION_FILTER_NONE
• SELECTION_FILTER_ALL
• SELECTION_FILTER_VERTEX
• SELECTION_FILTER_EDGE
• SELECTION_FILTER_FACE
• SELECTION_FILTER_CELL
• SELECTION_FILTER_DATUM
• SELECTION_FILTER_REF_POINT
• SELECTION_FILTER_NODE
• SELECTION_FILTER_ELEMENT
• SELECTION_FILTER_FEATURE
For example:

class MyModuleGui(AFXModuleGui):

...

def activate(self):

toolset = getAFXApp().getAFXMainWindow().getToolset(
'Selection')

toolset.setFilterTypes(
SELECTION_FILTER_CELL|SELECTION_FILTER_FACE,
SELECTION_FILTER_FACE)

AFXModuleGui.activate(self)

10.5 The Help toolset

The Help toolset contains special methods that allows you to add your own logo and copyright
information to the Help→About Abaqus dialog box. Customized applications must show the standard
copyright information displayed by Abaqus/CAE or Abaqus/Viewer. In addition, you can customize
the copyright information at the top of the About Abaqus dialog box using the following methods:

• setCustomCopyrightStrings(customCopyrightVersion,
customCopyrightInfo)

10–8

Abaqus ID:
Printed on:

THE HELP TOOLSET

• setCustomLogoIcon(logoIcon)

For example:

from abaqusGui import *
from sessionGui import HelpToolsetGui
from myIcons import *
...

class MyMainWindow(AFXMainWindow):

def _init_(self, app, windowTitle='')

...

Add custom copyright info to the About Abaqus dialog.
#
helpToolset = HelpToolsetGui()
product = getAFXApp().getProductName()
major, minor, update = getAFXApp().getVersionNumbers()
prerelease = getAFXApp().getPrerelease()
if prerelease:

release = '%s %s.%s-PRE%s' % (
product, major, minor, update)

else:
release = '%s %s.%s-%s' % (

product, major, minor, update)
info = 'Copyright 2003\nMy Company'
helpToolset.setCustomCopyrightStrings(release, info)
icon = FXXPMIcon(app, myIconData)
helpToolset.setCustomLogoIcon(icon)
self.registerHelpToolset(helpToolset, GUI_IN_MENUBAR)

An alternative way to provide help in your application is to use special methods that allow you to
post a URL in a web browser. For example:

from uti import webBrowser
status = webBrowser.displayURL('http://www.3ds.com/simulia')
status = webBrowser.openWithURL(

'file://D:/users/someUser/someFile.html')

You can use any valid URL syntax, such as “http” or “file.” displayURL will display the URL in a
currently open browser window (if there are none, it will open a new window). openWithURL will

10–9

Abaqus ID:
Printed on:

AN EXAMPLE OF CUSTOMIZING A TOOLSET

always open a new browser window. No exceptions are thrown, but you can check the return status of
these methods for success.

10.6 An example of customizing a toolset

To modify an existing toolset, you start by deriving a new class from it. To modify widgets in the toolset,
you need to be able to access them. The following functions in the Abaqus GUI Toolkit allow you to
access a widget:

• getWidgetFromText(widget, text): The getWidgetFromText function returns a
widget whose label or tip text matches the specified text and is also a child of the specified widget.
For example, the following statement returns the widget that matches the Save As... item in the
File menu:

saveAsWidget = getWidgetFromText(fileMenu, 'Save As...')

• getSeparator(widget, index): The getSeparator function returns the nth separator
of the specified widget, where n is specified by the one-based index. For example, the following
statement returns the second separator in the File menu:

separatorWidget = getSeparator(fileMenu, 2)

The following example shows how you can modify the File toolset GUI. Figure 10–1 shows the File
menu before and after the script is executed.

from sessionGui import FileToolsetGui
from myIcons import boltToolboxIconData
from myForm import MyForm

class MyFileToolsetGui(FileToolsetGui):

#~~~
def __init__(self):

Construct the base class.
#
FileToolsetGui.__init__(self)

Remove unwanted items from the File menu,
including the second separator.
#
menubar = getAFXApp().getAFXMainWindow().getMenubar()
menu = getWidgetFromText(menubar, 'File').getMenu()

10–10

Abaqus ID:
Printed on:

AN EXAMPLE OF CUSTOMIZING A TOOLSET

Figure 10–1 The toolbar and the File menu before and after executing the example script.

getWidgetFromText(menu, 'New').hide()
getWidgetFromText(menu, 'Save').hide()
getWidgetFromText(menu, 'Save As...').hide()
getSeparator(menu, 2).hide()

Remove unwanted items from the toolbar
#
toolbar = self.getToolbarGroup('File')
getWidgetFromText(toolbar, 'New Model\nDatabase').hide()
getWidgetFromText(toolbar, 'Save Model\nDatabase').hide()

Add an item to the File menu just above Exit
#
btn = AFXMenuCommand(self, menu, 'Custom Button...',

None, MyForm(self), AFXMode.ID_ACTIVATE)
sep = getSeparator(menu, 6)
btn.linkBefore(sep)

Rename the File menu
#
fileMenu = getWidgetFromText(menubar, 'File')
fileMenu.setText('MyFile')

Change a toolbar button icon
#
btn = getWidgetFromText(toolbar, 'Open')

10–11

Abaqus ID:
Printed on:

AN EXAMPLE OF CUSTOMIZING A TOOLSET

icon = FXXPMIcon(getAFXApp(), boltToolboxIconData)
btn.setIcon(icon)

This example script illustrates the following:

Deriving a new toolset class

To modify a toolset GUI, you begin by deriving a new class from it. Inside the new class constructor
body, you must call the base class constructor and pass self as the first argument.

Removing items from a menu or toolbar

You can remove items from a menu by hiding them. You use the getWidgetFromText or the
getSeparator functions to obtain the widgets and call the hide method to remove them.

Adding items to a menu

You can insert items into an existing menu by creating new menu commands and positioning them
using the linkBefore or linkAfter methods.

Renaming items and changing icons

You can change the text or icon associated with a widget by calling the setText or setIcon
methods.

10–12

Abaqus ID:
Printed on:

Part VI: Creating a customized application
This part describes how you create a customized application. The following topics are covered:

• Chapter 11, “Creating an application”
• Chapter 12, “The application object”
• Chapter 13, “The main window”
• Chapter 14, “Customizing the main window”

Abaqus ID:
Printed on:

STARTUP SCRIPT

11. Creating an application

This chapter explains how to create an application. The following topics are covered:

• “Design overview,” Section 11.1
• “Startup script,” Section 11.2
• “Licensing and command line options,” Section 11.3
• “Installation,” Section 11.4

11.1 Design overview

An application consists of the two fundamental pieces:

• Kernel code
• GUI code
The kernel code consists of Python modules that contain functions and classes for performing

various tasks; for example, creating parts or postprocessing results. The GUI code provides a
convenient, user-friendly mechanism for gathering the inputs required for the kernel code. Kernel
coding is described in the Abaqus Scripting User’s Guide and the Abaqus Scripting Reference Guide.

To develop the GUI code, you begin with a startup script that launches the application from the
command line. The script creates an application object, which interacts with the window manager and
controls a main window. The main window provides components such as a menu bar, a toolbar, and a
toolbox. From that core you add functionality to the application by registering modules and toolsets.

Modules and toolsets are a way of grouping functionality to be presented to the user. For example,
the Part module in Abaqus/CAE groups all the functions related to creating and modifying parts.
Abaqus/CAE modules and toolsets can be included in your application, and you can write your own
modules and toolsets to provide custom functionality.

The widget library provides access to various GUI controls (such as push buttons, check buttons,
and text fields) that are used to build dialog boxes. These concepts are illustrated in Figure 11–1. Each
of these steps is described in detail in subsequent sections.

11.2 Startup script

Every application is started from a short startup script. The startup script performs the following tasks:

• Initializes an application object. The application object is responsible for high-level functions, such
as managing message queues and timers and updating the GUI, and controlling the main window.
It is not a visible object.

11–1

Abaqus ID:
Printed on:

STARTUP SCRIPT

Starts the application from the command line

Interacts with window manager, controls main window

GUI Infrastructure (main menus, toolbar, toolbox, etc.)

Functionality grouped by task (e. g., Part module, Datum toolset)

Responsible for gathering user input, processing commands

User input mechanisms

GUI controls (buttons, text fields, lists, etc.)

Startup script

Application object

Main window

GUI Modules, Toolsets

Modes

Dialogs, prompts

Widgets

Figure 11–1 An overview of GUI code.

• Instantiates a main window. The main window is what the user sees when the application is first
started and provides access to all of the application’s functionality.

• Creates and runs the application. Once the application is run, it enters an event loop where it waits
to react to user input, such as the click of a mouse.

The following illustrates a typical startup script.

from abaqusGui import *
import sys
from caeMainWindow import CaeMainWindow

#Define a custom callback, myStartupCB(), that will be invoked
#once the application has finished its startup processing
#
def myStartupCB():

from myStartupDB import MyStartupDB
db = MyStartupDB()
db.create()
db.show()

Initialize the application object
#

11–2

Abaqus ID:
Printed on:

STARTUP SCRIPT

app = AFXApp('Abaqus/CAE', 'SIMULIA')
app.init(sys.argv)
Construct the main window
#
CaeMainWindow(app)

Create the application
#
app.create()

Register the custom startup callback
#
NOTE: This call must be made after app.create()
setStartupCB(myStartupCB)

#Run the application
#
app.run()

The first statement in the script imports all constructors, including the AFXApp constructor, from the
abaqusGui module, which contains access to the entire Abaqus GUI Toolkit. The sys module is
also imported since it is needed to pass arguments into the application’s init method. After the script
imports the sys module, it imports the main window constructor.

This startup script has been customized to include a startup callback function that will display
a custom dialog, MyStartupDB, after the application starts. The callback is defined after the import
statements and before the application is initialized. The next statements instantiate and initialize the
application object. The application object is discussed in more detail in “The application object,”
Section 12.1. The script then instantiates the main window. The main window is what the user will see
when the application is started. The main window is discussed in more detail in Chapter 13, “The main
window.”

The application constructor creates all the data structures needed for that object, and the
app.create() statement creates all the GUI windows required by the application object. Next, the
custom callback startup function is registered.

The app.run() statement displays the application, including the custom startup dialog, and then
enters an event loop. The event loop then waits for user interaction.

When you start your custom application, you may want to use the –noStartup option in the
Abaqus/CAE execution procedure to prevent Abaqus/CAE from posting its own startup dialog. For
more information, see “Abaqus/CAE execution,” Section 3.2.7 of the Abaqus Analysis User’s Guide.

11–3

Abaqus ID:
Printed on:

INSTALLATION

11.3 Licensing and command line options

The startup script described in the previous section is run by specifying the name of the script as the
argument to the –custom option on the command line. To start your application, enter one of the
following,

abaqus cae -custom startupScript
abaqus viewer -custom startupScript

where startupScript is the name of the startup script for your application and does not include a file
extension. You are responsible for making sure that the script exists in a directory specified in the
PYTHONPATH environment variable defined in the abaqus.aev file. The abaqus.aev file is
described in “Installation,” Section 11.4.

The first argument to the abaqus command specifies the type of license to be checked out.
Specifying abaqus cae will check out a token named cae that will give you access to all the
Abaqus/CAE kernel modules. Specifiying abaqus viewer will check out a token called viewer
that will give you access to only the visualization kernel module. Therefore, if your application needs
to import any Abaqus module other than the Visualization module, you must check out a cae token.

11.4 Installation

You can use a simpler syntax to start an application that has been installed at a site. Installing an
application involves the following steps:

• Add an entry to the abaqus_dir/SMA/site/abaqus.app file, where abaqus_dir is the name of
the directory in which Abaqus is installed. To determine the location of abaqus_dir at your site,
type abaqus whereami at the operating system prompt.

The format of entries in the abaqus.app file is

applicationName cae | viewer -custom startupScript

where applicationName is the name that the user must specify on the command line to start the
application.

– The second parameter determines the type of token that the application will check out—cae
or viewer.

– startupScript is the name of the startup script without any file extension. The script must
reside in a directory specified in the PYTHONPATH environment variable. applicationName
and startupScript can be the same.

• Edit the abaqus_dir/SMA/site/abaqus.aev file. You must add the directory that contains the
customization script to the definition of the PYTHONPATH environment variable. By convention,
customization scripts are located in directories underneath abaqus_dir/customApps. You should

11–4

Abaqus ID:
Printed on:

INSTALLATION

add your directory near to the end of the PYTHONPATH definition, just prior to the current directory
(.). This will ensure that you do not override any existing settings in the PYTHONPATH definition.

To keep the path to your application portable and generic, you should use an environment
variable to specify the root of the path. For a standard Abaqus installation, the $ABA_HOME
environment variable refers to the same directory as abaqus_dir. As a result, you can use the
$ABA_HOME environment variable to specify the directory that contains your customization script;
for example,

$ABA_HOME/customApps/myApp

For example, to include the myApp directory shown above in the PYTHONPATH, you should
change the PYTHONPATH definition in abaqus.aev from this

PYTHONPATH
$ABA_HOME/cae/Python/Lib:$ABA_HOME/cae/Python/Obj:
$ABA_HOME/cae/exec/lbr:.:$PYTHONPATH

to this

PYTHONPATH
$ABA_HOME/cae/Python/Lib:$ABA_HOME/cae/Python/Obj:
$ABA_HOME/cae/exec/lbr:$ABA_HOME/customApps/myApp:
.:$PYTHONPATH

• There are syntax differences between Linux systems and Windows systems. By default, Abaqus
uses Linux syntax and automatically converts the Linux syntax toWindows syntax if the application
is run on a Windows platform. However, if you need to specify the drive letter of your path on a
Windows system, you must use Windows syntax. To use Windows syntax, you must make the
following changes to the entire PYTHONPATH line:

Linux Windows

: ;

/ \

$NAME %NAME%

The following example shows an abaqus.aev file that refers to a drive letter and has been
modified to run on a Windows system:

ABA_PATH $ABA_HOME:$ABA_HOME/cae

PYTHONPATH
%ABA_HOME%\cae\Python\Lib;%ABA_HOME%\cae\Python\Obj;

11–5

Abaqus ID:
Printed on:

INSTALLATION

%ABA_HOME%\cae\exec\lbr;d:\boltApp1;.;%PYTHONPATH%

ABA_LIBRARY_PATH
$ABA_HOME/cae/ABA_SELECT:
$ABA_HOME/cae/exec/lbr:$ABA_HOME/cae/Python/Obj/lbr:
$ABA_HOME/cae/External/Acis:$ABA_HOME/cae/External:
$ABA_HOME/cae/External/ebt:$ABA_HOME/exec

Use the following syntax to start your application:

abaqus applicationName

11–6

Abaqus ID:
Printed on:

COMMON METHODS

12. The application object

This section describes the Abaqus application object. The application object manages themessage queue,
timers, chores, GUI updating, and other system facilities. The following topics are covered:

• “The application object,” Section 12.1
• “Common methods,” Section 12.2

12.1 The application object

The application object manages the message queue, timers, chores, GUI updating, and other system
facilities. Each application will have an application object, which you typically create in the application’s
startup file. For more information, see “Startup script,” Section 11.2. The constructor for the application
object takes the following arguments:

AFXApp(appName, vendorName, productName, majorNumber, minorNumber,
updateNumber, prerelease)

The application and vendor names are intended to be keys into the registry. The registry is a place to
store settings that are persistent between sessions of the application; for example, the size and location of
the application on the desktop when the application it starts. The registry is currently not used by Abaqus,
but these keys are included as placeholders for future capabilities. The registry will have various sections
that allow you to group settings. Some settings may apply to all products from a particular vendor, and
some settings may apply to only a specific product from a vendor.

By default, Abaqus displays the product name and release numbers in the main window’s title bar;
for more information, see “The title bar,” Section 13.2.

12.2 Common methods

You can access the application object using the following statement:

app = getAFXApp()

The following list shows some of the most commonly used application methods:

getAFXMainWindow()

Returns a handle to the main window object.

getProductName()

Returns the product name.

12–1

Abaqus ID:
Printed on:

COMMON METHODS

getVersionNumbers()

Returns a tuple of (majorNumber, minorNumber, updateNumber).

getPrerelease()

Returns True if this application is a prerelease.

beep()

Rings the system bell.

12–2

Abaqus ID:
Printed on:

AN OVERVIEW OF THE MAIN WINDOW

13. The main window

This section describes the layout, components, and behavior of the Abaqus main window. The following
topics are covered:

• “An overview of the main window,” Section 13.1
• “The title bar,” Section 13.2
• “The menu bar,” Section 13.3
• “Toolbars,” Section 13.4
• “The context bar,” Section 13.5
• “The module toolbox,” Section 13.6
• “The drawing area and canvas,” Section 13.7
• “The prompt area,” Section 13.8
• “The message area,” Section 13.9
• “The command line interface,” Section 13.10

13.1 An overview of the main window

Interactive Abaqus products consist of a single main window that contains several GUI infrastructure
components. The main window itself provides only GUI infrastructure support. You add specific
functionality to the application by registering modules and toolsets with the main window. Registering
modules and toolsets is discussed in detail in “Modules and toolsets,” Section 14.1.

The main window is designed to work with the concept of GUI modules, which contain their own
menu bar, toolbar, and toolbox entries. The main window shows only the components for one module at
a time. The main window is responsible for swapping these components in and out as the user visits the
various modules of the application.

The following statement shows the constructor that you use to create the main window:

AFXMainWindow(app, title, icon=None, miniIcon=None,
opts=DECOR_ALL, x=0, y=0, w=0, h=0)

The following list describes the arguments to the AFXMainWindow constructor:

app

The application object.

title

A String that will be shown in the title bar of the main window.

13–1

Abaqus ID:
Printed on:

THE TITLE BAR

icon

A 32 × 32 pixel icon used for the application on the desktop.

miniIcon

A 16 × 16 pixel used on Windows for the application in the title bar and system tray.

opts

Flags controlling various window behavior.

x,y,w,h

The X-, Y-location of the window, and the width and height of the window. The default value of zero
indicates that the system should calculate these numbers automatically. The main window size and
location are stored in abaqus_2016.gpr when the application exits so that when the application
is started again it will appear in the same location with the same size. Therefore, it is recommended
that you do not set x, y, w, or h in the main window constructor; however, if you do, those settings
will override the settings in abaqus_2016.gpr.

The following statement shows how you can access the main window:

mainWindow = getAFXApp().getAFXMainWindow()

The layout of the main window is shown in Figure 13–1.

13.2 The title bar

By default, the string shown in the title bar is constructed from the arguments passed into the AFXApp
constructor, as shown in the following statement:

AFXApp(appName, vendorName, productName,
majorNumber, minorNumber, updateNumber, prerelease)

where majorNumber is the version number, minorNumber is the release number,
updateNumber is the update number, and prerelease is the prerelease number.

The title is generated using the format shown in the following statement:

productName + majorNumber + '.' + minorNumber +
'-' + updateNumber

For example, the following statement,

AFXApp(productName="Abaqus/CAE",
majorNumber=6, minorNumber=12, updateNumber=1)

generates the following string in the title bar: Abaqus/CAE 6.12-1

13–2

Abaqus ID:
Printed on:

THE TITLE BAR

_ Title string

Persistent toolset menus

Persistent toolset tools

Module control

Module menus

 Module tools

Context controls

Help

Help/Info

Model
Tree

Prompt area

Title bar

Menu bar

Toolbar

Context bar

Canvas and drawing area

Module
Toolbox

Message area

Command
line interface

Figure 13–1 The main window.

If you do not specify the major, minor, and update numbers in the application constructor, they
default to the current Abaqus/CAE release numbers. Similarly, if you specify release numbers but you
do not specify a product name, the release numbers default to the current Abaqus/CAE release numbers.
If you set the prerelease argument in the AFXApp constructor to True, the update number is preceded by
PRE. For example, Abaqus/CAE 6.12-PRE1.

In addition, if the user has opened a model database, the title bar string contains
the name of the current model database; for example, Abaqus/CAE 6.12–1 MDB:
C:\projects\cars\engines\turbo-1.cae.

If the name of the current model database, including the path, exceeds 50 characters, the name will
be abbreviated by showing only the first and last 25 characters separated by “…”.

If you do not want the default title processing, you can override it by specifying a title in the
AFXMainWindow constructor. If you specify a title in the AFXMainWindow constructor, the
Abaqus GUI Toolkit ignores the arguments in the application constructor and uses the title specified.
The model database name and the name of the current viewport (when maximized) will continue to be
shown in the title bar, even if you override the default title processing.

You can access the string shown in the window title bar using the following statement:

title = getAFXApp().getAFXMainWindow().getTitle()

13–3

Abaqus ID:
Printed on:

TOOLBARS

13.3 The menu bar

The menu bar consists of the following three areas:

• Persistent toolset menus
• Module menus
• Help menu

The persistent toolset menus and the help menu are shown when the application is first started, and
they remain visible throughout the user’s session. The module menus reflect the current module and
are swapped in and out as the user visits the various modules. You can access the menu bar using the
following statement:

menubar = getAFXApp().getAFXMainWindow().getMenubar()

13.4 Toolbars

By default, Abaqus/CAE displays all of the toolbars in a row underneath the main menu bar, as shown
in Figure 13–2:

File View Manipulation View Options

Render Style

Query
Display Group Color Code

Toolbar grip

Selection

Translucency

View CutVisible Objects

Figure 13–2 The Abaqus/CAE toolbars.

You can use the following statement to access a toolbar group from the module or toolset that defines
the toolbar group:

toolbar = self.getToolbarGroup(toolbarName)

13–4

Abaqus ID:
Printed on:

THE PROMPT AREA

where self is the module or toolset, and toolbarName is the name given to the toolbar when Abaqus/CAE
constructs it. You can determine the names of the toolbars by selecting Tools→Customize from the
main menu bar and viewing the dialog box that appears.

13.5 The context bar

The context bar contains controls for the current module and other context; for example, the current part.
You can access the context bar using the following statement:

contextBar = getAFXApp().getAFXMainWindow().getContextBar()

13.6 The module toolbox

The module toolbox contains icons for tools commonly used in the current module. When you switch
into a module, that module’s toolbox icons replace those of the previous module. You can access the
module toolbox using the following statement:

toolbox = getAFXApp().getAFXMainWindow().getToolbox()

13.7 The drawing area and canvas

The canvas provides an infinite space upon which you can create and manipulate viewports. The drawing
area is a window into the visible part of the canvas. You can access the canvas area using the following
statement:

canvas = getAFXApp().getAFXMainWindow().i_getCanvas()

The “i_” in the method name indicates that this is an internal method that you should not normally use—it
is expected that only the GUI infrastructure needs to access this method.

13.8 The prompt area

The prompt area displays prompts to guide the user, as well as work-in-progress (WIP) messages. You
can display messages in the prompt area during procedures. For more information, see “Picking in
procedure modes,” Section 7.5.

13–5

Abaqus ID:
Printed on:

THE COMMAND LINE INTERFACE

13.9 The message area

The application uses the message area to display informational and warning messages. You can send
messages to the message area using the following method:

mainWindow = getAFXApp().getAFXMainWindow()
mainWindow.writeToMessageArea('Warning: Some items failed!')

13.10 The command line interface

The command line interface (CLI) provides an interface to the kernel-side Python command interpreter.
The CLI does not provide any access to the GUI-side Python interpreter. The user can enter Abaqus
scripting interface commands in the CLI, which are then sent to the kernel for processing. In addition,
the user can enter standard Python commands in the CLI. For example, the user can use the CLI as a
simple calculator, as shown in Figure 13–3.

Figure 13–3 The command line interface.

The Abaqus GUI Toolkit does not expect users to use the CLI to issue Abaqus Scripting Interface
commands. Normally all commands sent from the GUI process are sent by the GUI via modes. For
more information, see Chapter 7, “Modes.” You can hide the CLI if it is not used by your application, as
shown in the following statements:

mainWindow = getAFXApp().getAFXMainWindow()
mainWindow.hideCli()

13–6

Abaqus ID:
Printed on:

THE Abaqus/CAE MAIN WINDOW

14. Customizing the main window

The main window base class provides the GUI infrastructure to allow user interaction, the manipulation
of modules, and the display of objects in the viewport. The main window base class does not provide
any application functionality; for example, building parts. This section describes how you assign
functionality to the application by deriving from the main window base class and then registering
modules and toolsets. The following topics are covered:

• “Modules and toolsets,” Section 14.1
• “The Abaqus/CAE main window,” Section 14.2

14.1 Modules and toolsets

Modules are one of the fundamental concepts of an interactive Abaqus application. A module serves
to group functionality into logical units; for example, a unit that creates parts or a unit that meshes the
assembly. An interactive Abaqus application presents only one module at a time to the user. Presenting
only one module makes the interface less complicated because the interface shows fewer GUI controls
and allows the user to focus on one major task at a time. Abaqus is designed to manipulate modules by
swapping in one module’s GUI while swapping out the previous module’s GUI when requested by the
user.

Toolsets are similar to modules in that they group functionality into logical units. However,
toolsets generally contain less functionality than modules because toolsets focus on one particular task;
for example, partitioning. Toolsets can be used in more than one module.

14.2 The Abaqus/CAE main window

This section describes how you can create an application by deriving a new class from the
AFXMainWindow class and registering the modules and toolsets used by your application. The
following topics are covered:

• “Main window example,” Section 14.2.1
• “Importing modules,” Section 14.2.2
• “Constructing the base class,” Section 14.2.3
• “Registering persistent toolsets,” Section 14.2.4
• “Registering modules,” Section 14.2.5

14–1

Abaqus ID:
Printed on:

THE Abaqus/CAE MAIN WINDOW

14.2.1 Main window example
To create a main window for a particular application, you start by deriving a new class from the
AFXMainWindow class. In the constructor of the main window, you register the modules and toolsets
used by your application.

The following script constructs the Abaqus/CAE main window. The script is described in detail
in the following sections. Details of how you construct modules and toolsets are given in Chapter 8,
“Creating a GUI module,” and Chapter 9, “Creating a GUI toolset.”

from abaqusGui import *
class CaeMainWindow(AFXMainWindow):

def __init__(self, app, windowTitle=''):
Construct the GUI infrastructure.
#
AFXMainWindow.__init__(self, app, windowTitle)

Register the "persistent" toolsets.
#
self.registerToolset(FileToolsetGui(),

GUI_IN_MENUBAR|GUI_IN_TOOLBAR)
self.registerToolset(ModelToolsetGui(),

GUI_IN_MENUBAR)
self.registerToolset(CanvasToolsetGui(),

GUI_IN_MENUBAR)
self.registerToolset(ViewManipToolsetGui(),

GUI_IN_MENUBAR|GUI_IN_TOOLBAR)
self.registerToolset(TreeToolsetGui(),

GUI_IN_MENUBAR)
self.registerToolset(AnnotationToolsetGui(),

GUI_IN_MENUBAR|GUI_IN_TOOLBAR)
self.registerToolset(CustomizeToolsetGui(),

GUI_IN_TOOL_PANE)
self.registerToolset(SelectionToolsetGui(),

GUI_IN_TOOLBAR)
registerPluginToolset()
self.registerHelpToolset(HelpToolsetGui(),

GUI_IN_MENUBAR|GUI_IN_TOOLBAR)

Register modules.
#
self.registerModule('Part', 'Part')

14–2

Abaqus ID:
Printed on:

THE Abaqus/CAE MAIN WINDOW

self.registerModule('Property', 'Property')
self.registerModule('Assembly', 'Assembly')
self.registerModule('Step', 'Step')
self.registerModule('Interaction', 'Interaction')
self.registerModule('Load', 'Load')
self.registerModule('Mesh', 'Mesh')
self.registerModule('Job', 'Job')
self.registerModule('Visualization', 'Visualization')
self.registerModule('Sketch', 'Sketch')

14.2.2 Importing modules

The abaqusGui module provides access to the entire Abaqus GUI Toolkit in addition to the modules,
such as FileToolsetGui, that must be registered with the main window.

14.2.3 Constructing the base class

The first statement in the CaeMainWindow constructor initializes the class by calling the base class
constructor. In general, you should always call the base class constructor of the class from which you
are deriving, unless you know that you will overwrite the functionality of the class.

14.2.4 Registering persistent toolsets

Toolsets that are registered with the main window, as opposed to being registered with a module, are
available in the GUI when the application first starts up. In addition, toolsets that are registered with the
main window remain available throughout a session as the user switches modules.

To register a toolset, you call the registerToolsetmethod and pass in an instance of the toolset
class. You can register a help toolset with the application using the registerHelpToolsetmethod.
A toolset that is registered in this manner always appears to the right of all other menus in the menu bar.
For more information, see “Registering toolsets,” Section 8.2.6.

Note: Every application must register viewManipToolsetGui.

14.2.5 Registering modules

Registering modules puts the module names into the Module combo box in the context bar. The order
in which the modules are registered is the order in which the modules will appear in the Module combo
box in the context bar.

14–3

Abaqus ID:
Printed on:

THE Abaqus/CAE MAIN WINDOW

To register a module, you call the registerModule method. The registerModule method
takes the following arguments:

displayedName

A string that the application will display in the Module combo box in the context bar.

moduleImportName

A string that specifies the name of the module to be imported. It is your responsibility to ensure
that this name is the same as your GUI module file name (without the .py extension). For more
information, see “Instantiating the GUI module,” Section 8.2.8.

kernelInitializationCommand

A string that specifies the name of the Python command sent to the kernel when the module is
loaded.

14–4

Abaqus ID:
Printed on:

APPENDIX A: ICONS

Appendix A: Icons
The Abaqus GUI Toolkit supports the following formats for creating icons:

• XPM
• BMP
• GIF
• PNG

You can use most image editing programs to produce icon images in one of the supported formats. After
you have created the image file, you construct the icon by calling the appropriate method, as shown in the
following example:

icon = afxCreatePNGIcon('myIcon.png')
FXLabel(self, 'A label with an icon', icon)

In some cases you may need to call the icon’s createmethod before using it in a widget. In the previous
example, it is not necessary to call the icon’s createmethod because the label widget creates the icon when
the label is created. However, if you construct an icon after you call the widget’s create method, you
must call the icon’s create method before you use the icon in the widget. For more information, see “The
create method,” Section 3.8.

The format of an XPM icon is simple; and you can use any pixmap editor, or even a text editor, to create
the icon data. For more details on the XPM format, visit the XPM web site. The following image editing
programs support the XPM format:

• ImageMagick (www.imagemagick.org)
• The GIMP (www.gimp.org)

You can also find references to pixmap editors in the FAQ page on the XPM web site.
As an alternative to using the afxCreateXPMIcon method, you can define the XPM image data as a

Python list of strings and create an icon using the FXXPMIcon method, as shown in the following example.

Note: For a list of valid color names and their corresponding RGB values, see Appendix B, “Colors and
RGB values. To define a transparent color, you must define it as “c None s None”, not just “c None”.

blueIconData = [
"12 12 2 1",
". c None s None",
" c blue",
" ",
" ",
" ",
" ",
" ",
" ",

A–1

Abaqus ID:
Printed on:

APPENDIX A: ICONS

" ",
" ",
" ",
" ",
" ",
" "
]
blueIcon = FXXPMIcon(getAFXApp(),blueIconData)

Figure A–1 shows the blue square icon created by this example.

Figure A–1 The blue square icon.

A–2

Abaqus ID:
Printed on:

APPENDIX B: COLORS AND RGB VALUES

Appendix B: Colors and RGB values

When you are specifying a color, some methods require a string and other methods require an FXColor. To
create an FXColor, you use the FXRGB function and pass in the appropriate values for red, green, and blue.
The following table shows a list of valid color strings and the corresponding RGB values.

String RGB value

AliceBlue FXRGB(240,248,255)

AntiqueWhite FXRGB(250,235,215)

AntiqueWhite1 FXRGB(255,239,219)

AntiqueWhite2 FXRGB(238,223,204)

AntiqueWhite3 FXRGB(205,192,176)

AntiqueWhite4 FXRGB(139,131,120)

Aquamarine FXRGB(127,255,212)

Aquamarine1q FXRGB(127,255,212)

Aquamarine2 FXRGB(118,238,198)

Aquamarine3 FXRGB(102,205,170)

Aquamarine4 FXRGB(69,139,116)

Azure FXRGB(240,255,255)

Azure1 FXRGB(240,255,255)

Azure2 FXRGB(224,238,238)

Azure3 FXRGB(193,205,205)

Azure4 FXRGB(131,139,139)

Beige FXRGB(245,245,220)

Bisque FXRGB(255,228,196)

Bisque1 FXRGB(255,228,196)

Bisque2 FXRGB(238,213,183)

Bisque3 FXRGB(205,183,158)

Bisque4 FXRGB(139,125,107)

Black FXRGB(0,0,0)

B–1

Abaqus ID:
Printed on:

APPENDIX B: COLORS AND RGB VALUES

String RGB value

BlanchedAlmond FXRGB(255,235,205)

Blue FXRGB(0,0,255)

Blue1 FXRGB(0,0,255)

Blue2 FXRGB(0,0,238)

Blue3 FXRGB(0,0,205)

Blue4 FXRGB(0,0,139)

BlueViolet FXRGB(138, 43,226)

Brown FXRGB(165, 42, 42)

Brown1 FXRGB(255, 64, 64)

Brown2 FXRGB(238, 59, 59)

Brown3 FXRGB(205, 51, 51)

Brown4 FXRGB(139, 35, 35)

Burlywood FXRGB(222,184,135)

Burlywood1 FXRGB(255,211,155)

Burlywood2 FXRGB(238,197,145)

Burlywood3 FXRGB(205,170,125)

Burlywood4 FXRGB(139,115, 85)

CadetBlue FXRGB(95,158,160)

CadetBlue1 FXRGB(152,245,255)

CadetBlue2 FXRGB(142,229,238)

CadetBlue3 FXRGB(122,197,205)

CadetBlue4 FXRGB(83,134,139)

Chartreuse FXRGB(127,255,0)

Chartreuse1 FXRGB(127,255,0)

Chartreuse2 FXRGB(118,238,0)

Chartreuse3 FXRGB(102,205,0)

Chartreuse4 FXRGB(69,139,0)

Chocolate FXRGB(210,105, 30)

B–2

Abaqus ID:
Printed on:

APPENDIX B: COLORS AND RGB VALUES

String RGB value

Chocolate1 FXRGB(255,127, 36)

Chocolate2 FXRGB(238,118, 33)

Chocolate3 FXRGB(205,102, 29)

Chocolate4 FXRGB(139, 69, 19)

Coral FXRGB(255,127, 80)

Coral1 FXRGB(255,114, 86)

Coral2 FXRGB(238,106, 80)

Coral3 FXRGB(205, 91, 69)

Coral4 FXRGB(139, 62, 47)

CornflowerBlue FXRGB(100,149,237)

Cornsilk FXRGB(255,248,220)

Cornsilk1 FXRGB(255,248,220)

Cornsilk2 FXRGB(238,232,205)

Cornsilk3 FXRGB(205,200,177)

Cornsilk4 FXRGB(139,136,120)

Cyan FXRGB(0,255,255)

Cyan1 FXRGB(0,255,255)

Cyan2 FXRGB(0,238,238)

Cyan3 FXRGB(0,205,205)

Cyan4 FXRGB(0,139,139)

DarkBlue FXRGB(0,0,139)

DarkCyan FXRGB(0,139,139)

DarkGoldenrod FXRGB(184,134, 11)

DarkGoldenrod1 FXRGB(255,185, 15)

DarkGoldenrod2 FXRGB(238,173, 14)

DarkGoldenrod3 FXRGB(205,149, 12)

DarkGoldenrod4 FXRGB(139,101,8)

DarkGray FXRGB(169,169,169)

B–3

Abaqus ID:
Printed on:

APPENDIX B: COLORS AND RGB VALUES

String RGB value

DarkGreen FXRGB(0,100,0)

DarkGrey FXRGB(169,169,169)

DarkKhaki FXRGB(189,183,107)

DarkMagenta FXRGB(139,0,139)

DarkOliveGreen FXRGB(85,107, 47)

DarkOliveGreen1 FXRGB(202,255,112)

DarkOliveGreen2 FXRGB(188,238,104)

DarkOliveGreen3 FXRGB(162,205, 90)

DarkOliveGreen4 FXRGB(110,139, 61)

DarkOrange FXRGB(255,140,0)

DarkOrange1 FXRGB(255,127,0)

DarkOrange2 FXRGB(238,118,0)

DarkOrange3 FXRGB(205,102,0)

DarkOrange4 FXRGB(139, 69,0)

DarkOrchid FXRGB(153, 50,204)

DarkOrchid1 FXRGB(191, 62,255)

DarkOrchid2 FXRGB(178, 58,238)

DarkOrchid3 FXRGB(154, 50,205)

DarkOrchid4 FXRGB(104, 34,139)

DarkRed FXRGB(139,0,0)

DarkSalmon FXRGB(233,150,122)

DarkSeaGreen FXRGB(143,188,143)

DarkSeaGreen1 FXRGB(193,255,193)

DarkSeaGreen2 FXRGB(180,238,180)

DarkSeaGreen3 FXRGB(155,205,155)

DarkSeaGreen4 FXRGB(105,139,105)

DarkSlateBlue FXRGB(72, 61,139)

DarkSlateGray FXRGB(47, 79, 79)

B–4

Abaqus ID:
Printed on:

APPENDIX B: COLORS AND RGB VALUES

String RGB value

DarkSlateGray1 FXRGB(151,255,255)

DarkSlateGray2 FXRGB(141,238,238)

DarkSlateGray3 FXRGB(121,205,205)

DarkSlateGray4 FXRGB(82,139,139)

DarkSlateGrey FXRGB(47, 79, 79)

DarkTurquoise FXRGB(0,206,209)

DarkViolet FXRGB(148,0,211)

DeepPink FXRGB(255, 20,147)

DeepPink1 FXRGB(255, 20,147)

DeepPink2 FXRGB(238, 18,137)

DeepPink3 FXRGB(205, 16,118)

DeepPink4 FXRGB(139, 10, 80)

DeepSkyBlue FXRGB(0,191,255)

DeepSkyBlue1 FXRGB(0,191,255)

DeepSkyBlue2 FXRGB(0,178,238)

DeepSkyBlue3 FXRGB(0,154,205)

DeepSkyBlue4 FXRGB(0,104,139)

DimGray FXRGB(105,105,105)

DimGrey FXRGB(105,105,105)

DodgerBlue FXRGB(30,144,255)

DodgerBlue1 FXRGB(30,144,255)

DodgerBlue2 FXRGB(28,134,238)

DodgerBlue3 FXRGB(24,116,205)

DodgerBlue4 FXRGB(16, 78,139)

Firebrick FXRGB(178, 34, 34)

Firebrick1 FXRGB(255, 48, 48)

Firebrick2 FXRGB(238, 44, 44)

Firebrick3 FXRGB(205, 38, 38)

B–5

Abaqus ID:
Printed on:

APPENDIX B: COLORS AND RGB VALUES

String RGB value

Firebrick4 FXRGB(139, 26, 26)

FloralWhite FXRGB(255,250,240)

ForestGreen FXRGB(34,139, 34)

Gainsboro FXRGB(220,220,220)

GhostWhite FXRGB(248,248,255)

Gold FXRGB(255,215,0)

Gold1 FXRGB(255,215,0)

Gold2 FXRGB(238,201,0)

Gold3 FXRGB(205,173,0)

Gold4 FXRGB(139,117,0)

Goldenrod FXRGB(218,165, 32)

Goldenrod1 FXRGB(255,193, 37)

Goldenrod2 FXRGB(238,180, 34)

Goldenrod3 FXRGB(205,155, 29)

Goldenrod4 FXRGB(139,105, 20)

Gray FXRGB(190,190,190)

Gray0 FXRGB(0,0,0)

Gray1 FXRGB(3,3,3)

Gray10 FXRGB(26, 26, 26)

Gray100 FXRGB(255,255,255)

Gray11 FXRGB(28, 28, 28)

Gray12 FXRGB(31, 31, 31)

Gray13 FXRGB(33, 33, 33)

Gray14 FXRGB(36, 36, 36)

Gray15 FXRGB(38, 38, 38)

Gray16 FXRGB(41, 41, 41)

Gray17 FXRGB(43, 43, 43)

Gray18 FXRGB(46, 46, 46)

B–6

Abaqus ID:
Printed on:

APPENDIX B: COLORS AND RGB VALUES

String RGB value

Gray19 FXRGB(48, 48, 48)

Gray2 FXRGB(5,5,5)

Gray20 FXRGB(51, 51, 51)

Gray21 FXRGB(54, 54, 54)

Gray22 FXRGB(56, 56, 56)

Gray23 FXRGB(59, 59, 59)

Gray24 FXRGB(61, 61, 61)

Gray25 FXRGB(64, 64, 64)

Gray26 FXRGB(66, 66, 66)

Gray27 FXRGB(69, 69, 69)

Gray28 FXRGB(71, 71, 71)

Gray29 FXRGB(74, 74, 74)

Gray3 FXRGB(8,8,8)

Gray30 FXRGB(77, 77, 77)

Gray31 FXRGB(79, 79, 79)

Gray32 FXRGB(82, 82, 82)

Gray33 FXRGB(84, 84, 84)

Gray34 FXRGB(87, 87, 87)

Gray35 FXRGB(89, 89, 89)

Gray36 FXRGB(92, 92, 92)

Gray37 FXRGB(94, 94, 94)

Gray38 FXRGB(97, 97, 97)

Gray39 FXRGB(99, 99, 99)

Gray4 FXRGB(10, 10, 10)

Gray40 FXRGB(102,102,102)

Gray41 FXRGB(105,105,105)

Gray42 FXRGB(107,107,107)

Gray43 FXRGB(110,110,110)

B–7

Abaqus ID:
Printed on:

APPENDIX B: COLORS AND RGB VALUES

String RGB value

Gray44 FXRGB(112,112,112)

Gray45 FXRGB(115,115,115)

Gray46 FXRGB(117,117,117)

Gray47 FXRGB(120,120,120)

Gray48 FXRGB(122,122,122)

Gray49 FXRGB(125,125,125)

Gray5 FXRGB(13, 13, 13)

Gray50 FXRGB(127,127,127)

Gray51 FXRGB(130,130,130)

Gray52 FXRGB(133,133,133)

Gray53 FXRGB(135,135,135)

Gray54 FXRGB(138,138,138)

Gray55 FXRGB(140,140,140)

Gray56 FXRGB(143,143,143)

Gray57 FXRGB(145,145,145)

Gray58 FXRGB(148,148,148)

Gray59 FXRGB(150,150,150)

Gray6 FXRGB(15, 15, 15)

Gray60 FXRGB(153,153,153)

Gray61 FXRGB(156,156,156)

Gray62 FXRGB(158,158,158)

Gray63 FXRGB(161,161,161)

Gray64 FXRGB(163,163,163)

Gray65 FXRGB(166,166,166)

Gray66 FXRGB(168,168,168)

Gray67 FXRGB(171,171,171)

Gray68 FXRGB(173,173,173)

Gray69 FXRGB(176,176,176)

B–8

Abaqus ID:
Printed on:

APPENDIX B: COLORS AND RGB VALUES

String RGB value

Gray7 FXRGB(18, 18, 18)

Gray70 FXRGB(179,179,179)

Gray71 FXRGB(181,181,181)

Gray72 FXRGB(184,184,184)

Gray73 FXRGB(186,186,186)

Gray74 FXRGB(189,189,189)

Gray75 FXRGB(191,191,191)

Gray76 FXRGB(194,194,194)

Gray77 FXRGB(196,196,196)

Gray78 FXRGB(199,199,199)

Gray79 FXRGB(201,201,201)

Gray8 FXRGB(20, 20, 20)

Gray80 FXRGB(204,204,204)

Gray81 FXRGB(207,207,207)

Gray82 FXRGB(209,209,209)

Gray83 FXRGB(212,212,212)

Gray84 FXRGB(214,214,214)

Gray85 FXRGB(217,217,217)

Gray86 FXRGB(219,219,219)

Gray87 FXRGB(222,222,222)

Gray88 FXRGB(224,224,224)

Gray89 FXRGB(227,227,227)

Gray9 FXRGB(23, 23, 23)

Gray90 FXRGB(229,229,229)

Gray91 FXRGB(232,232,232)

Gray92 FXRGB(235,235,235)

Gray93 FXRGB(237,237,237)

Gray94 FXRGB(240,240,240)

B–9

Abaqus ID:
Printed on:

APPENDIX B: COLORS AND RGB VALUES

String RGB value

Gray95 FXRGB(242,242,242)

Gray96 FXRGB(245,245,245)

Gray97 FXRGB(247,247,247)

Gray98 FXRGB(250,250,250)

Gray99 FXRGB(252,252,252)

Green FXRGB(0,255,0)

Green1 FXRGB(0,255,0)

Green2 FXRGB(0,238,0)

Green3 FXRGB(0,205,0)

Green4 FXRGB(0,139,0)

GreenYellow FXRGB(173,255, 47)

Grey FXRGB(190,190,190)

Grey0 FXRGB(0,0,0)

Grey1 FXRGB(3,3,3)

Grey10 FXRGB(26, 26, 26)

Grey100 FXRGB(255,255,255)

Grey11 FXRGB(28, 28, 28)

Grey12 FXRGB(31, 31, 31)

Grey13 FXRGB(33, 33, 33)

Grey14 FXRGB(36, 36, 36)

Grey15 FXRGB(38, 38, 38)

Grey16 FXRGB(41, 41, 41)

Grey17 FXRGB(43, 43, 43)

Grey18 FXRGB(46, 46, 46)

Grey19 FXRGB(48, 48, 48)

Grey2 FXRGB(5,5,5)

Grey20 FXRGB(51, 51, 51)

Grey21 FXRGB(54, 54, 54)

B–10

Abaqus ID:
Printed on:

APPENDIX B: COLORS AND RGB VALUES

String RGB value

Grey22 FXRGB(56, 56, 56)

Grey23 FXRGB(59, 59, 59)

Grey24 FXRGB(61, 61, 61)

Grey25 FXRGB(64, 64, 64)

Grey26 FXRGB(66, 66, 66)

Grey27 FXRGB(69, 69, 69)

Grey28 FXRGB(71, 71, 71)

Grey29 FXRGB(74, 74, 74)

Grey3 FXRGB(8,8,8)

Grey30 FXRGB(77, 77, 77)

Grey31 FXRGB(79, 79, 79)

Grey32 FXRGB(82, 82, 82)

Grey33 FXRGB(84, 84, 84)

Grey34 FXRGB(87, 87, 87)

Grey35 FXRGB(89, 89, 89)

Grey36 FXRGB(92, 92, 92)

Grey37 FXRGB(94, 94, 94)

Grey38 FXRGB(97, 97, 97)

Grey39 FXRGB(99, 99, 99)

Grey4 FXRGB(10, 10, 10)

Grey40 FXRGB(102,102,102)

Grey41 FXRGB(105,105,105)

Grey42 FXRGB(107,107,107)

Grey43 FXRGB(110,110,110)

Grey44 FXRGB(112,112,112)

Grey45 FXRGB(115,115,115)

Grey46 FXRGB(117,117,117)

Grey47 FXRGB(120,120,120)

B–11

Abaqus ID:
Printed on:

APPENDIX B: COLORS AND RGB VALUES

String RGB value

Grey48 FXRGB(122,122,122)

Grey49 FXRGB(125,125,125)

Grey5 FXRGB(13, 13, 13)

Grey50 FXRGB(127,127,127)

Grey51 FXRGB(130,130,130)

Grey52 FXRGB(133,133,133)

Grey53 FXRGB(135,135,135)

Grey54 FXRGB(138,138,138)

Grey55 FXRGB(140,140,140)

Grey56 FXRGB(143,143,143)

Grey57 FXRGB(145,145,145)

Grey58 FXRGB(148,148,148)

Grey59 FXRGB(150,150,150)

Grey6 FXRGB(15, 15, 15)

Grey60 FXRGB(153,153,153)

Grey61 FXRGB(156,156,156)

Grey62 FXRGB(158,158,158)

Grey63 FXRGB(161,161,161)

Grey64 FXRGB(163,163,163)

Grey65 FXRGB(166,166,166)

Grey66 FXRGB(168,168,168)

Grey67 FXRGB(171,171,171)

Grey68 FXRGB(173,173,173)

Grey69 FXRGB(176,176,176)

Grey7 FXRGB(18, 18, 18)

Grey70 FXRGB(179,179,179)

Grey71 FXRGB(181,181,181)

Grey72 FXRGB(184,184,184)

B–12

Abaqus ID:
Printed on:

APPENDIX B: COLORS AND RGB VALUES

String RGB value

Grey73 FXRGB(186,186,186)

Grey74 FXRGB(189,189,189)

Grey75 FXRGB(191,191,191)

Grey76 FXRGB(194,194,194)

Grey77 FXRGB(196,196,196)

Grey78 FXRGB(199,199,199)

Grey79 FXRGB(201,201,201)

Grey8 FXRGB(20, 20, 20)

Grey80 FXRGB(204,204,204)

Grey81 FXRGB(207,207,207)

Grey82 FXRGB(209,209,209)

Grey83 FXRGB(212,212,212)

Grey84 FXRGB(214,214,214)

Grey85 FXRGB(217,217,217)

Grey86 FXRGB(219,219,219)

Grey87 FXRGB(222,222,222)

Grey88 FXRGB(224,224,224)

Grey89 FXRGB(227,227,227)

Grey9 FXRGB(23, 23, 23)

Grey90 FXRGB(229,229,229)

Grey91 FXRGB(232,232,232)

Grey92 FXRGB(235,235,235)

Grey93 FXRGB(237,237,237)

Grey94 FXRGB(240,240,240)

Grey95 FXRGB(242,242,242)

Grey96 FXRGB(245,245,245)

Grey97 FXRGB(247,247,247)

Grey98 FXRGB(250,250,250)

B–13

Abaqus ID:
Printed on:

APPENDIX B: COLORS AND RGB VALUES

String RGB value

Grey99 FXRGB(252,252,252)

Honeydew FXRGB(240,255,240)

Honeydew1 FXRGB(240,255,240)

Honeydew2 FXRGB(224,238,224)

Honeydew3 FXRGB(193,205,193)

Honeydew4 FXRGB(131,139,131)

HotPink FXRGB(255,105,180)

HotPink1 FXRGB(255,110,180)

HotPink2 FXRGB(238,106,167)

HotPink3 FXRGB(205, 96,144)

HotPink4 FXRGB(139, 58, 98)

IndianRed FXRGB(205, 92, 92)

IndianRed1 FXRGB(255,106,106)

IndianRed2 FXRGB(238, 99, 99)

IndianRed3 FXRGB(205, 85, 85)

IndianRed4 FXRGB(139, 58, 58)

Ivory FXRGB(255,255,240)

Ivory1 FXRGB(255,255,240)

Ivory2 FXRGB(238,238,224)

Ivory3 FXRGB(205,205,193)

Ivory4 FXRGB(139,139,131)

Khaki FXRGB(240,230,140)

Khaki1 FXRGB(255,246,143)

Khaki2 FXRGB(238,230,133)

Khaki3 FXRGB(205,198,115)

Khaki4 FXRGB(139,134, 78)

Lavender FXRGB(230,230,250)

LavenderBlush FXRGB(255,240,245)

B–14

Abaqus ID:
Printed on:

APPENDIX B: COLORS AND RGB VALUES

String RGB value

LavenderBlush1 FXRGB(255,240,245)

LavenderBlush2 FXRGB(238,224,229)

LavenderBlush3 FXRGB(205,193,197)

LavenderBlush4 FXRGB(139,131,134)

LawnGreen FXRGB(124,252,0)

LemonChiffon FXRGB(255,250,205)

LemonChiffon1 FXRGB(255,250,205)

LemonChiffon2 FXRGB(238,233,191)

LemonChiffon3 FXRGB(205,201,165)

LemonChiffon4 FXRGB(139,137,112)

LightBlue FXRGB(173,216,230)

LightBlue1 FXRGB(191,239,255)

LightBlue2 FXRGB(178,223,238)

LightBlue3 FXRGB(154,192,205)

LightBlue4 FXRGB(104,131,139)

LightCoral FXRGB(240,128,128)

LightCyan FXRGB(224,255,255)

LightCyan1 FXRGB(224,255,255)

LightCyan2 FXRGB(209,238,238)

LightCyan3 FXRGB(180,205,205)

LightCyan4 FXRGB(122,139,139)

LightGoldenrod FXRGB(238,221,130)

LightGoldenrod1 FXRGB(255,236,139)

LightGoldenrod2 FXRGB(238,220,130)

LightGoldenrod3 FXRGB(205,190,112)

LightGoldenrod4 FXRGB(139,129, 76)

LightGoldenrodYellow FXRGB(250,250,210)

LightGray FXRGB(211,211,211)

B–15

Abaqus ID:
Printed on:

APPENDIX B: COLORS AND RGB VALUES

String RGB value

LightGreen FXRGB(144,238,144)

LightGrey FXRGB(211,211,211)

LightPink FXRGB(255,182,193)

LightPink1 FXRGB(255,174,185)

LightPink2 FXRGB(238,162,173)

LightPink3 FXRGB(205,140,149)

LightPink4 FXRGB(139, 95,101)

LightSalmon FXRGB(255,160,122)

LightSalmon1 FXRGB(255,160,122)

LightSalmon2 FXRGB(238,149,114)

LightSalmon3 FXRGB(205,129, 98)

LightSalmon4 FXRGB(139, 87, 66)

LightSeaGreen FXRGB(32,178,170)

LightSkyBlue FXRGB(135,206,250)

LightSkyBlue1 FXRGB(176,226,255)

LightSkyBlue2 FXRGB(164,211,238)

LightSkyBlue3 FXRGB(141,182,205)

LightSkyBlue4 FXRGB(96,123,139)

LightSlateBlue FXRGB(132,112,255)

LightSlateGray FXRGB(119,136,153)

LightSlateGrey FXRGB(119,136,153)

LightSteelBlue FXRGB(176,196,222)

LightSteelBlue1 FXRGB(202,225,255)

LightSteelBlue2 FXRGB(188,210,238)

LightSteelBlue3 FXRGB(162,181,205)

LightSteelBlue4 FXRGB(110,123,139)

LightYellow FXRGB(255,255,224)

LightYellow1 FXRGB(255,255,224)

B–16

Abaqus ID:
Printed on:

APPENDIX B: COLORS AND RGB VALUES

String RGB value

LightYellow2 FXRGB(238,238,209)

LightYellow3 FXRGB(205,205,180)

LightYellow4 FXRGB(139,139,122)

LimeGreen FXRGB(50,205, 50)

Linen FXRGB(250,240,230)

Magenta FXRGB(255,0,255)

Magenta1 FXRGB(255,0,255)

Magenta2 FXRGB(238,0,238)

Magenta3 FXRGB(205,0,205)

Magenta4 FXRGB(139,0,139)

Maroon FXRGB(176, 48, 96)

Maroon1 FXRGB(255, 52,179)

Maroon2 FXRGB(238, 48,167)

Maroon3 FXRGB(205, 41,144)

Maroon4 FXRGB(139, 28, 98)

MediumAquamarine FXRGB(102,205,170)

MediumBlue FXRGB(0,0,205)

MediumOrchid FXRGB(186, 85,211)

MediumOrchid1 FXRGB(224,102,255)

MediumOrchid2 FXRGB(209, 95,238)

MediumOrchid3 FXRGB(180, 82,205)

MediumOrchid4 FXRGB(122, 55,139)

MediumPurple FXRGB(147,112,219)

MediumPurple1 FXRGB(171,130,255)

MediumPurple2 FXRGB(159,121,238)

MediumPurple3 FXRGB(137,104,205)

MediumPurple4 FXRGB(93, 71,139)

MediumSeaGreen FXRGB(60,179,113)

B–17

Abaqus ID:
Printed on:

APPENDIX B: COLORS AND RGB VALUES

String RGB value

MediumSlateBlue FXRGB(123,104,238)

MediumSpringGreen FXRGB(0,250,154)

MediumTurquoise FXRGB(72,209,204)

MediumVioletRed FXRGB(199, 21,133)

MidnightBlue FXRGB(25, 25,112)

MintCream FXRGB(245,255,250)

MistyRose FXRGB(255,228,225)

MistyRose1 FXRGB(255,228,225)

MistyRose2 FXRGB(238,213,210)

MistyRose3 FXRGB(205,183,181)

MistyRose4 FXRGB(139,125,123)

Moccasin FXRGB(255,228,181)

NavajoWhite FXRGB(255,222,173)

NavajoWhite1 FXRGB(255,222,173)

NavajoWhite2 FXRGB(238,207,161)

NavajoWhite3 FXRGB(205,179,139)

NavajoWhite4 FXRGB(139,121, 94)

Navy FXRGB(0,0,128)

NavyBlue FXRGB(0,0,128)

None FXRGB(0,0,0,0)

OldLace FXRGB(253,245,230)

OliveDrab FXRGB(107,142, 35)

OliveDrab1 FXRGB(192,255, 62)

OliveDrab2 FXRGB(179,238, 58)

OliveDrab3 FXRGB(154,205, 50)

OliveDrab4 FXRGB(105,139, 34)

Orange FXRGB(255,165,0)

Orange1 FXRGB(255,165,0)

B–18

Abaqus ID:
Printed on:

APPENDIX B: COLORS AND RGB VALUES

String RGB value

Orange2 FXRGB(238,154,0)

Orange3 FXRGB(205,133,0)

Orange4 FXRGB(139, 90,0)

OrangeRed FXRGB(255, 69,0)

OrangeRed1 FXRGB(255, 69,0)

OrangeRed2 FXRGB(238, 64,0)

OrangeRed3 FXRGB(205, 55,0)

OrangeRed4 FXRGB(139, 37,0)

Orchid FXRGB(218,112,214)

Orchid1 FXRGB(255,131,250)

Orchid2 FXRGB(238,122,233)

Orchid3 FXRGB(205,105,201)

Orchid4 FXRGB(139, 71,137)

PaleGoldenrod FXRGB(238,232,170)

PaleGreen FXRGB(152,251,152)

PaleGreen1 FXRGB(154,255,154)

PaleGreen2 FXRGB(144,238,144)

PaleGreen3 FXRGB(124,205,124)

PaleGreen4 FXRGB(84,139, 84)

PaleTurquoise FXRGB(175,238,238)

PaleTurquoise1 FXRGB(187,255,255)

PaleTurquoise2 FXRGB(174,238,238)

PaleTurquoise3 FXRGB(150,205,205)

PaleTurquoise4 FXRGB(102,139,139)

PaleVioletRed FXRGB(219,112,147)

PaleVioletRed1 FXRGB(255,130,171)

PaleVioletRed2 FXRGB(238,121,159)

PaleVioletRed3 FXRGB(205,104,137)

B–19

Abaqus ID:
Printed on:

APPENDIX B: COLORS AND RGB VALUES

String RGB value

PaleVioletRed4 FXRGB(139, 71, 93)

PapayaWhip FXRGB(255,239,213)

PeachPuff FXRGB(255,218,185)

PeachPuff1 FXRGB(255,218,185)

PeachPuff2 FXRGB(238,203,173)

PeachPuff3 FXRGB(205,175,149)

PeachPuff4 FXRGB(139,119,101)

Peru FXRGB(205,133, 63)

Pink FXRGB(255,192,203)

Pink1 FXRGB(255,181,197)

Pink2 FXRGB(238,169,184)

Pink3 FXRGB(205,145,158)

Pink4 FXRGB(139, 99,108)

Plum FXRGB(221,160,221)

Plum1 FXRGB(255,187,255)

Plum2 FXRGB(238,174,238)

Plum3 FXRGB(205,150,205)

Plum4 FXRGB(139,102,139)

PowderBlue FXRGB(176,224,230)

Purple FXRGB(160, 32,240)

Purple1 FXRGB(155, 48,255)

Purple2 FXRGB(145, 44,238)

Purple3 FXRGB(125, 38,205)

Purple4 FXRGB(85, 26,139)

Red FXRGB(255,0,0)

Red1 FXRGB(255,0,0)

Red2 FXRGB(238,0,0)

Red3 FXRGB(205,0,0)

B–20

Abaqus ID:
Printed on:

APPENDIX B: COLORS AND RGB VALUES

String RGB value

Red4 FXRGB(139,0,0)

RosyBrown FXRGB(188,143,143)

RosyBrown1 FXRGB(255,193,193)

RosyBrown2 FXRGB(238,180,180)

RosyBrown3 FXRGB(205,155,155)

RosyBrown4 FXRGB(139,105,105)

RoyalBlue FXRGB(65,105,225)

RoyalBlue1 FXRGB(72,118,255)

RoyalBlue2 FXRGB(67,110,238)

RoyalBlue3 FXRGB(58, 95,205)

RoyalBlue4 FXRGB(39, 64,139)

SaddleBrown FXRGB(139, 69, 19)

Salmon FXRGB(250,128,114)

Salmon1 FXRGB(255,140,105)

Salmon2 FXRGB(238,130, 98)

Salmon3 FXRGB(205,112, 84)

Salmon4 FXRGB(139, 76, 57)

SandyBrown FXRGB(244,164, 96)

SeaGreen FXRGB(46,139, 87)

SeaGreen1 FXRGB(84,255,159)

SeaGreen2 FXRGB(78,238,148)

SeaGreen3 FXRGB(67,205,128)

SeaGreen4 FXRGB(46,139, 87)

Seashell FXRGB(255,245,238)

Seashell1 FXRGB(255,245,238)

Seashell2 FXRGB(238,229,222)

Seashell3 FXRGB(205,197,191)

Seashell4 FXRGB(139,134,130)

B–21

Abaqus ID:
Printed on:

APPENDIX B: COLORS AND RGB VALUES

String RGB value

Sienna FXRGB(160, 82, 45)

Sienna1 FXRGB(255,130, 71)

Sienna2 FXRGB(238,121, 66)

Sienna3 FXRGB(205,104, 57)

Sienna4 FXRGB(139, 71, 38)

SkyBlue FXRGB(135,206,235)

SkyBlue1 FXRGB(135,206,255)

SkyBlue2 FXRGB(126,192,238)

SkyBlue3 FXRGB(108,166,205)

SkyBlue4 FXRGB(74,112,139)

SlateBlue FXRGB(106, 90,205)

SlateBlue1 FXRGB(131,111,255)

SlateBlue2 FXRGB(122,103,238)

SlateBlue3 FXRGB(105, 89,205)

SlateBlue4 FXRGB(71, 60,139)

SlateGray FXRGB(112,128,144)

SlateGray1 FXRGB(198,226,255)

SlateGray2 FXRGB(185,211,238)

SlateGray3 FXRGB(159,182,205)

SlateGray4 FXRGB(108,123,139)

SlateGrey FXRGB(112,128,144)

Snow FXRGB(255,250,250)

Snow1 FXRGB(255,250,250)

Snow2 FXRGB(238,233,233)

Snow3 FXRGB(205,201,201)

Snow4 FXRGB(139,137,137)

SpringGreen FXRGB(0,255,127)

SpringGreen1 FXRGB(0,255,127)

B–22

Abaqus ID:
Printed on:

APPENDIX B: COLORS AND RGB VALUES

String RGB value

SpringGreen2 FXRGB(0,238,118)

SpringGreen3 FXRGB(0,205,102)

SpringGreen4 FXRGB(0,139, 69)

SteelBlue FXRGB(70,130,180)

SteelBlue1 FXRGB(99,184,255)

SteelBlue2 FXRGB(92,172,238)

SteelBlue3 FXRGB(79,148,205)

SteelBlue4 FXRGB(54,100,139)

Tan FXRGB(210,180,140)

Tan1 FXRGB(255,165, 79)

Tan2 FXRGB(238,154, 73)

Tan3 FXRGB(205,133, 63)

Tan4 FXRGB(139, 90, 43)

Thistle FXRGB(216,191,216)

Thistle1 FXRGB(255,225,255)

Thistle2 FXRGB(238,210,238)

Thistle3 FXRGB(205,181,205)

Thistle4 FXRGB(139,123,139)

Tomato FXRGB(255, 99, 71)

Tomato1 FXRGB(255, 99, 71)

Tomato2 FXRGB(238, 92, 66)

Tomato3 FXRGB(205, 79, 57)

Tomato4 FXRGB(139, 54, 38)

Turquoise FXRGB(64,224,208)

Turquoise1 FXRGB(0,245,255)

Turquoise2 FXRGB(0,229,238)

Turquoise3 FXRGB(0,197,205)

Turquoise4 FXRGB(0,134,139)

B–23

Abaqus ID:
Printed on:

APPENDIX B: COLORS AND RGB VALUES

String RGB value

Violet FXRGB(238,130,238)

VioletRed FXRGB(208, 32,144)

VioletRed1 FXRGB(255, 62,150)

VioletRed2 FXRGB(238, 58,140)

VioletRed3 FXRGB(205, 50,120)

VioletRed4 FXRGB(139, 34, 82)

Wheat FXRGB(245,222,179)

Wheat1 FXRGB(255,231,186)

Wheat2 FXRGB(238,216,174)

Wheat3 FXRGB(205,186,150)

Wheat4 FXRGB(139,126,102)

White FXRGB(255,255,255)

WhiteSmoke FXRGB(245,245,245)

Yellow FXRGB(255,255,0)

Yellow1 FXRGB(255,255,0)

Yellow2 FXRGB(238,238,0)

Yellow3 FXRGB(205,205,0)

Yellow4 FXRGB(139,139,0)

YellowGreen FXRGB(154,205, 50)

B–24

Abaqus ID:
Printed on:

APPENDIX C: LAYOUT HINTS

Appendix C: Layout hints

The layout managers in the Abaqus GUI Toolkit support the following layout hints:

Layout hint Used in Effect

LAYOUT_SIDE_TOP (default)
LAYOUT_SIDE_BOTTOM
LAYOUT_SIDE_LEFT
LAYOUT_SIDE_RIGHT

FXPacker
FXGroupBox
FXTopLevel

If you specify one of these four layout hints, the child
widget will be stuck to the top, bottom, left, or right,
respectively, in the layout manager cavity. The size
of the cavity will be reduced by the amount lopped
off by the packed widget. LAYOUT_SIDE_TOP
and LAYOUT_SIDE_BOTTOM will reduce the
height of the cavity. LAYOUT_SIDE_LEFT and
LAYOUT_SIDE_RIGHT will reduce the width of
the cavity. For other composite widgets, these hints
may not have any effect.

LAYOUT_LEFT (default)
LAYOUT_RIGHT

All

The widget will be placed on the left side
or right side of the space remaining in the
container. When used for a child of FXPacker
FXGroupBox, or FXTopLevel, the hint will be
ignored unless either LAYOUT_SIDE_TOP or
LAYOUT_SIDE_BOTTOM is specified.

LAYOUT_TOP (default)
LAYOUT_BOTTOM

All

The widget will be placed on the top-side or
bottom-side of the space remaining in the container.
For a child of FXPacker, etc., these options will only
have effect if either LAYOUT_SIDE_RIGHT or
LAYOUT_SIDE_LEFT is specified.

LAYOUT_CENTER_X
LAYOUT_CENTER_Y

All

The widget will be centered in the X-direction (or
Y-direction) in the parent. Extra spacing will be
added around the widget to place it at the center of
the space available to it. The size of the widget will
be its default size unless LAYOUT_FIX_WIDTH or
LAYOUT_FIX_HEIGHT have been specified.

C–1

Abaqus ID:
Printed on:

APPENDIX C: LAYOUT HINTS

Layout hint Used in Effect

LAYOUT_FILL_X
LAYOUT_FILL_Y

All

Either none, one, or both of these hints may be
specified. LAYOUT_FILL_X will cause the parent
layout manager to stretch or shrink the widget to
accommodate the available space. If more than one
child with this option is placed side by side, the
available space will be subdivided proportionally
to their default size. LAYOUT_FILL_Y has the
identical effect on the vertical direction.

LAYOUT_FIX_X
LAYOUT_FIX_Y

All

Either none, one, or both of these hints may be
specified. The LAYOUT_FIX_X hint will cause
the parent layout manager to place this widget at
the indicated X-position, as passed on the optional
arguments in the widgets constructor argument
list. Likewise, a LAYOUT_FIX_Y hint will cause
placement at the indicated Y-position. The X- and
Y-positions are specified in the parent’s coordinate
system.

LAYOUT_FILL_ROW
LAYOUT_FILL_COLUMN

FXMatrix

If LAYOUT_FILL_COLUMN is specified for all
child widgets in a certain column of a matrix layout
manager, the whole column can stretch if the matrix
itself is stretched horizontally. Analogously, if
LAYOUT_FILL_ROW is specified for all child
widgets in a certain row, the whole row is stretched if
the matrix layout manager is stretched vertically.

LAYOUT_FIX_WIDTH
LAYOUT_FIX_HEIGHT

All

These options will fix the widget’s width (or height)
to the value specified on the constructor. You can
change the size of the widget using its setWidth() and
setHeight() methods; however, the layout manager
will generally observe the specified dimensions of
the widget without trying to modify it (unless other
options override).

C–2

Abaqus ID:
Printed on:

APPENDIX C: LAYOUT HINTS

Layout hint Used in Effect

LAYOUT_MIN_WIDTH
(default)
LAYOUT_MIN_HEIGHT
(default)

All

Either none, one, or both of these hints
may be specified. You will almost never
specify these options, except perhaps for
code legibility. If LAYOUT_FIX_WIDTH or
LAYOUT_FIX_HEIGHT are not specified, these
options will cause the parent layout widget to use the
default (or minimum) width and height, respectively.

C–3

Abaqus ID:
Printed on:

About SIMULIA
Dassault Systèmes SIMULIA applications, including Abaqus, Isight, Tosca, and Simulation
Lifecycle Management, enable users to leverage physics-based simulation and high-performance
computing to explore real-world behavior of products, nature, and life. As an integral part
of Dassault Systèmes’ 3DEXPERIENCE platform, SIMULIA applications accelerate the
process of making highly informed, mission-critical design and engineering decisions before
committing to costly and time-consuming physical prototypes. www.3ds.com/simulia

Europe/Middle East/Africa
Dassault Systèmes
10, rue Marcel Dassault
CS 40501
78946 Vélizy-Villacoublay Cedex
France

Americas
Dassault Systèmes
175 Wyman Street
Waltham, Massachusetts
02451-1223
USA

Asia-Pacific
Dassault Systèmes K.K.
ThinkPark Tower
2-1-1 Osaki, Shinagawa-ku,
Tokyo 141-6020
Japan

Our 3DEXPERIENCE Platform powers our brand
applications, serving 12 industries, and provides a rich
portfolio of industry solution experiences.
Dassault Systèmes, the 3DEXPERIENCE Company, provides business and people
with virtual universes to imagine sustainable innovations. Its world-leading solutions
transform the way products are designed, produced, and supported. Dassault Systèmes’
collaborative solutions foster social innovation, expanding possibilities for the virtual world
to improve the real world. The group brings value to over 170,000 customers of all sizes
in all industries in more than 140 countries. For more information, visit www.3ds.com.

©
20

15
 D

as
sa

ul
t S

ys
tè

m
es

. A
ll

ri
gh

ts
 re

se
rv

ed
. 3

D
EX

P
ER

IE
N
CE

, t
he

 C
om

pa
ss

 ic
on

 a
nd

 th
e

3D
S

lo
go

, C
A

TI
A

, S
O

LI
D

W
O

R
KS

, E
N

O
VI

A
, D

EL
M

IA
, S

IM
U

LI
A

, G
EO

VI
A

, E
XA

LE
A

D
, 3

D
 V

IA
, B

IO
VI

A
, N

ET
VI

B
ES

, a
nd

 3
D

XC
IT

E
ar

e
co

m
m

er
ci

al
 tr

ad
em

ar
ks

or

 re
gi

st
er

ed
 tr

ad
em

ar
ks

 o
f D

as
sa

ul
t S

ys
tè

m
es

 o
r i

ts
 s

ub
si

di
ar

ie
s

in
 th

e
U

.S
. a

nd
/o

r o
th

er
 c

ou
nt

ri
es

. A
ll

ot
he

r t
ra

de
m

ar
ks

 a
re

 o
w

ne
d

by
 th

ei
r r

es
pe

ct
iv

e
ow

ne
rs

. U
se

 o
f a

ny
 D

as
sa

ul
t S

ys
tè

m
es

 o
r i

ts
 s

ub
si

di
ar

ie
s

tr
ad

em
ar

ks
 is

 s
ub

je
ct

 to
 th

ei
r e

xp
re

ss
 w

ri
tt

en
 a

pp
ro

va
l.

	Abaqus 2016 PDF Documentation
	Abaqus GUI Toolkit User's Guide
	Legal Notices
	Preface
	Contents

	Part I: Overview
	1. Introduction
	1.1 What can I do with the Abaqus GUI Toolkit ?
	1.2 Prerequisites for using the Abaqus GUI Toolkit
	1.3 Abaqus GUI Toolkit basics
	1.4 Organization of the Abaqus GUI Toolkit User's Guide

	Part II: Getting Started
	2. Getting started with the Abaqus GUI Toolkit
	2.1 The kernel and GUI
	2.2 What are the components of an Abaqus GUI application?
	2.3 Plug-ins and customized applications
	2.4 Running the prototype application

	Part III: Building dialog boxes
	3. Widgets
	3.1 Labels and buttons
	3.1.1 An overview of labels and buttons
	3.1.2 Labels
	3.1.3 Push buttons
	3.1.4 Check buttons
	3.1.5 Radio buttons
	3.1.6 Menu buttons
	3.1.7 Popup menus
	3.1.8 Toolbar and toolbox buttons
	3.1.9 Flyout buttons
	3.1.10 Color buttons

	3.2 Text widgets
	3.2.1 Single line text field widget
	3.2.2 Multi-line text widget

	3.3 Lists and combo boxes
	3.3.1 Lists
	3.3.2 Combo boxes
	3.3.3 List boxes

	3.4 Range widgets
	3.4.1 Sliders
	3.4.2 Spinners

	3.5 Tree widgets
	3.5.1 Tree list
	3.5.2 Option tree list

	3.6 Table widget
	3.6.1 Table constructor
	3.6.2 Rows and columns
	3.6.3 Spanning
	3.6.4 Justification
	3.6.5 Editing
	3.6.6 Types
	3.6.7 List type
	3.6.8 Boolean type
	3.6.9 Icon type
	3.6.10 Color type
	3.6.11 Popup menu
	3.6.12 Colors
	3.6.13 Sorting

	3.7 Miscellaneous widgets
	3.7.1 Separators
	3.7.2 Notes and warnings
	3.7.3 Progress bar

	3.8 The create method
	3.9 Widgets and fonts

	4. Layout managers
	4.1 An overview of layout managers
	4.2 Padding and spacing
	4.3 Horizontal and vertical frames
	4.4 Vertical alignment for composite children
	4.5 General-purpose layout managers
	4.6 Row and column layout manager
	4.7 Resizable regions
	4.8 Rotating regions
	4.9 Tab books
	4.10 Layout hints
	4.11 Layout examples
	4.12 Tips for specifying layout hints

	5. Dialog boxes
	5.1 An overview of dialog boxes
	5.2 Modal versus modeless
	5.3 Showing and hiding dialog boxes
	5.4 Message dialog boxes
	5.4.1 Error dialog boxes
	5.4.2 Warning dialog boxes
	5.4.3 Information dialog boxes
	5.4.4 Specialized message dialog boxes

	5.5 Custom dialog boxes
	5.5.1 An overview of custom dialog boxes
	5.5.2 Constructors
	5.5.3 Sizing and location
	5.5.4 Action area
	5.5.5 Custom action area button names
	5.5.6 Action button handling

	5.6 Data dialog boxes
	5.6.1 An overview of data dialog boxes
	5.6.2 Constructors
	5.6.3 Bailout
	5.6.4 Constructor contents
	5.6.5 Transitions
	5.6.6 Updating your GUI
	5.6.7 Action area

	5.7 Common dialog boxes
	5.7.1 File/Directory selector
	5.7.2 Print dialog box
	5.7.3 Color selector dialog box

	Part IV: Issuing commands
	6. Commands
	6.1 An overview of commands
	6.2 The kernel and GUI processes
	6.3 Executing commands
	6.4 Kernel commands
	6.5 GUI commands
	6.5.1 Constructing GUI commands
	6.5.2 GUI commands and current objects
	6.5.3 Keeping the GUI and commands up-to-date
	6.5.4 Targets and messages
	6.5.5 Automatic GUI updating
	6.5.6 Data targets
	6.5.7 Option versus value mode
	6.5.8 AFXKeywords
	6.5.9 Expression evaluation
	6.5.10 Connecting keywords to widgets
	6.5.11 Boolean, integer, float, and string keyword examples
	6.5.12 Symbolic constant keyword examples
	6.5.13 Tuple keyword examples
	6.5.14 Table keyword example
	6.5.15 Object keyword example
	6.5.16 Defaults objects

	6.6 AFXTargets
	6.7 Accessing kernel data from the GUI
	6.8 Receiving notification of kernel data changes
	6.8.1 Automatically registering a query on kernel objects
	6.8.2 Manually registering a query on kernel objects
	6.8.3 Using registerQuery on kernelAccess proxy objects
	6.8.4 Recognizing when custom kernel data change

	7. Modes
	7.1 An overview of modes
	7.2 Mode processing
	7.2.1 The mode processing sequence
	7.2.2 Activating a mode
	7.2.3 Step and dialog box processing
	7.2.4 Command processing
	7.2.5 Work in progress
	7.2.6 Command error handling

	7.3 Form modes
	7.3.1 Form example
	7.3.2 Form constructor
	7.3.3 getFirstDialog
	7.3.4 getNextDialog
	7.3.5 Collecting input from the GUI

	7.4 Procedure modes
	7.4.1 Procedure example
	7.4.2 Procedure constructor
	7.4.3 getFirstStep
	7.4.4 getNextStep
	7.4.5 getLoopStep
	7.4.6 AFXDialogStep

	7.5 Picking in procedure modes
	7.5.1 AFXPickStep
	7.5.2 Refining what the user can select
	7.5.3 Nonpickable entities
	7.5.4 Highlighting while selecting
	7.5.5 Selection options
	7.5.6 Allowing the user to type in points
	7.5.7 Picking by angle
	7.5.8 AFXOrderedPickStep
	7.5.9 Prepopulating a pick step
	7.5.10 Limitations while selecting

	Part V: GUI modules and toolsets
	8. Creating a GUI module
	8.1 An overview of creating a GUI module
	8.2 GUI module example
	8.2.1 Deriving a new module class
	8.2.2 Tree tabs
	8.2.3 Menu bar items
	8.2.4 Toolbar items
	8.2.5 Toolbox items
	8.2.6 Registering toolsets
	8.2.7 Kernel module initialization
	8.2.8 Instantiating the GUI module

	8.3 Registering a GUI module
	8.4 Switching to a GUI module

	9. Creating a GUI toolset
	9.1 An overview of creating a GUI toolset
	9.2 GUI Toolset example
	9.3 Creating toolset components
	9.4 Registering toolsets

	10. Customizing an existing module or toolset
	10.1 Modifying and accessing Abaqus/CAE GUI modules and toolsets
	10.1.1 Abaqus/CAE GUI modules and toolsets
	10.1.2 Accessing Abaqus/CAE functions

	10.2 The File toolset
	10.3 The Tree toolset
	10.4 The Selection toolset
	10.5 The Help toolset
	10.6 An example of customizing a toolset

	Part VI: Creating a customized application
	11. Creating an application
	11.1 Design overview
	11.2 Startup script
	11.3 Licensing and command line options
	11.4 Installation

	12. The application object
	12.1 The application object
	12.2 Common methods

	13. The main window
	13.1 An overview of the main window
	13.2 The title bar
	13.3 The menu bar
	13.4 Toolbars
	13.5 The context bar
	13.6 The module toolbox
	13.7 The drawing area and canvas
	13.8 The prompt area
	13.9 The message area
	13.10 The command line interface

	14. Customizing the main window
	14.1 Modules and toolsets
	14.2 The Abaqus/CAE main window
	14.2.1 Main window example
	14.2.2 Importing modules
	14.2.3 Constructing the base class
	14.2.4 Registering persistent toolsets
	14.2.5 Registering modules

	Appendix A: Icons
	Appendix B: Colors and RGB values
	Appendix C: Layout hints

	actionField8:
	actionField9:
	actionField10:
	actionField11:
	actionField14:
	actionField15:
	actionField16:
	actionField17:
	actionField18:
	actionField22:
	actionField23:
	actionField24:
	actionField25:
	actionField26:
	actionField27:
	actionField28:
	actionField29:
	actionField30:
	actionField31:
	actionField32:
	actionField33:
	actionField34:
	actionField35:
	actionField36:
	actionField37:
	actionField38:
	actionField39:
	actionField40:
	actionField41:
	actionField42:
	actionField43:
	actionField44:
	actionField45:
	actionField46:
	actionField47:
	actionField48:
	actionField49:
	actionField50:
	actionField51:
	actionField52:
	actionField53:
	actionField54:
	actionField55:
	actionField56:
	actionField57:
	actionField58:
	actionField59:
	actionField60:
	actionField61:
	actionField62:
	actionField63:
	actionField64:
	actionField65:
	actionField66:
	actionField67:
	actionField68:
	actionField69:
	actionField70:
	actionField71:
	actionField72:
	actionField74:
	actionField75:
	actionField76:
	actionField77:
	actionField78:
	actionField79:
	actionField80:
	actionField81:
	actionField82:
	actionField83:
	actionField84:
	actionField85:
	actionField86:
	actionField87:
	actionField88:
	actionField89:
	actionField90:
	actionField91:
	actionField92:
	actionField93:
	actionField94:
	actionField98:
	actionField99:
	actionField100:
	actionField101:
	actionField102:
	actionField103:
	actionField104:
	actionField105:
	actionField106:
	actionField107:
	actionField108:
	actionField109:
	actionField110:
	actionField111:
	actionField112:
	actionField113:
	actionField114:
	actionField115:
	actionField116:
	actionField117:
	actionField118:
	actionField119:
	actionField120:
	actionField121:
	actionField122:
	actionField123:
	actionField124:
	actionField125:
	actionField126:
	actionField127:
	actionField128:
	actionField129:
	actionField130:
	actionField131:
	actionField132:
	actionField133:
	actionField134:
	actionField135:
	actionField136:
	actionField137:
	actionField138:
	actionField139:
	actionField140:
	actionField141:
	actionField142:
	actionField143:
	actionField144:
	actionField148:
	actionField149:
	actionField150:
	actionField151:
	actionField152:
	actionField153:
	actionField154:
	actionField156:
	actionField157:
	actionField158:
	actionField159:
	actionField160:
	actionField161:
	actionField162:
	actionField163:
	actionField164:
	actionField165:
	actionField166:
	actionField167:
	actionField168:
	actionField169:
	actionField172:
	actionField173:
	actionField174:
	actionField175:
	actionField176:
	actionField177:
	actionField178:
	actionField179:
	actionField180:
	actionField181:
	actionField182:
	actionField183:
	actionField184:
	actionField185:
	actionField186:
	actionField187:
	actionField188:
	actionField189:
	actionField190:
	actionField191:
	actionField192:
	actionField193:
	actionField194:
	actionField195:
	actionField196:
	actionField197:
	actionField198:
	actionField199:
	actionField200:
	actionField201:
	actionField202:
	actionField203:
	actionField204:
	actionField205:
	actionField206:
	actionField207:
	actionField208:
	actionField209:
	actionField210:
	actionField211:
	actionField212:
	actionField213:
	actionField214:
	actionField215:
	actionField216:
	actionField217:
	actionField218:

