Product: Abaqus/Standard
Model:
Length | 10.0 |
Radius | 5.0 |
Thickness | 0.5 |
Centrifugal axis of rotation | (0, 1, 0) through origin |
Gravity load vector | (0, 1, 0) |
Material:
Initial conditions:
Gauss integration is used for the shell cross-section in input file esa2sxd1.inp.
Model:
Length | 10.0 |
Radius | 5.0 |
Thickness | 0.5 |
Centrifugal axis of rotation | (0, 1, 0) through origin |
Gravity load vector | (0, 1, 0) |
Material:
Initial conditions:
Model:
Length | 10.0 |
Radius | 5.0 |
Thickness | 0.5 |
Centrifugal axis of rotation | (0, 0, 1) through origin |
Coriolis axis of rotation | (0, 0, 1) through origin |
Gravity load vector | (0, 0, 1) |
Material:
Initial conditions:
BX, BY, BZ, GRAV, CENT, CENTRIF, P, HP.
CORIO.
ROTA.
BX, BY, BZ, GRAV, CENT, CENTRIF, P, HP.
CORIO.
ROTA.
Model:
Square dimensions | 7 × 7 |
Thickness | 2.0 |
Centrifugal axis of rotation | (0, 1, 0) through origin |
Coriolis axis of rotation | (0, 0, 1) through origin |
Gravity load vector | (0, 0, 1) |
Material:
Initial conditions:
BX, BY, BZ, GRAV, CENT, P, HP, *TEMPERATURE.
P, HP, *TEMPERATURE.
BX, BY, BZ, GRAV, CENT, CENTRIF, P, HP, *TEMPERATURE.
P, HP, *TEMPERATURE.
ROTA.
BX, BY, BZ, GRAV, CENT, P, HP, *TEMPERATURE.
P, HP, *TEMPERATURE.
BX, BY, BZ, GRAV, CENT, CENTRIF, P, HP, *TEMPERATURE.
CORIO.
P, HP, *TEMPERATURE.
BX, BY, BZ, GRAV, CENT, P, HP, *TEMPERATURE.
P, HP, *TEMPERATURE.
BX, BY, BZ, GRAV, CENT, CENTRIF, P, HP, *TEMPERATURE.
CORIO.
P, HP, *TEMPERATURE.
ROTA.
BX, BY, BZ, GRAV, CENT, P, HP, *TEMPERATURE.
P, HP, *TEMPERATURE.
BX, BY, BZ, GRAV, CENT, CENTRIF, P, HP, *TEMPERATURE.
CORIO.
P, HP, *TEMPERATURE.
ROTA.
BX, BY, BZ, GRAV, CENT, P, HP, *TEMPERATURE.
P, HP, *TEMPERATURE.
BX, BY, BZ, GRAV, CENT, CENTRIF, P, HP, *TEMPERATURE.
CORIO.
P, HP, *TEMPERATURE.
ROTA.
BX, BY, BZ, GRAV, CENT, P, HP, *TEMPERATURE.
P, HP, *TEMPERATURE.
BX, BY, BZ, GRAV, CENT, CENTRIF, P, HP, *TEMPERATURE.
CORIO.
P, HP, *TEMPERATURE.
ROTA.
BX, BY, BZ, GRAV, CENT, P, HP, *TEMPERATURE.
P, HP, *TEMPERATURE.
BX, BY, BZ, GRAV, CENT, CENTRIF, P, HP, *TEMPERATURE.
CORIO.
P, HP, *TEMPERATURE.
ROTA.
BX, BY, BZ, GRAV, CENT, P, HP, *TEMPERATURE.
P, HP, *TEMPERATURE.
BX, BY, BZ, GRAV, CENT, CENTRIF, P, HP, *TEMPERATURE.
CORIO.
P, HP, *TEMPERATURE.
ROTA.
BX, BY, BZ, GRAV, CENT, P, HP, *TEMPERATURE.
P, HP, *TEMPERATURE.
BX, BY, BZ, GRAV, CENT, CENTRIF, P, HP, *TEMPERATURE.
CORIO.
P, HP, *TEMPERATURE.
ROTA.
BX, BY, BZ, GRAV, CENT, CENTRIF, P, HP, *TEMPERATURE.
CORIO.
P, HP, *TEMPERATURE.
ROTA.
BX, BY, BZ, GRAV, CENT, CENTRIF, P, HP, *TEMPERATURE.
CORIO.
P, HP, *TEMPERATURE.
ROTA.
BX, BY, BZ, GRAV, CENT, CENTRIF, P, HP, *TEMPERATURE.
CORIO.
P, HP, *TEMPERATURE.
ROTA.
BX, BY, BZ, GRAV, CENT, CENTRIF, P, HP, *TEMPERATURE.
CORIO.
P, HP, *TEMPERATURE.
ROTA.
BX, BY, BZ, GRAV, CENT, CENTRIF, P, HP, *TEMPERATURE.
CORIO.
P, HP, *TEMPERATURE.
ROTA.
BX, BY, BZ, GRAV, CENT, CENTRIF, P, HP, *TEMPERATURE.
CORIO.
P, HP, *TEMPERATURE.
ROTA.
BX, BY, BZ, GRAV, CENT, CENTRIF, P, HP, *TEMPERATURE.
CORIO.
P, HP, *TEMPERATURE.
ROTA.
BX, BY, BZ, GRAV, CENT, CENTRIF, P, HP, *TEMPERATURE.
CORIO.
P, HP, *TEMPERATURE.
ROTA.
Unconstrained expansion of a hollow cylinder subject to uniform thermal loading is investigated. One-quarter of the cylinder is modeled with a 6 × 6 mesh of quadrilateral elements with appropriate boundary conditions applied along lines of symmetry. A similar discretization is used (with the diagonals crossed on the quadrilaterals) to test triangular elements.
Model:
Material:
Initial conditions:
S3/S3R: *TEMPERATURE.
S4R: *TEMPERATURE.
S4R5: *TEMPERATURE.
S8R: *TEMPERATURE.
S8R5: *TEMPERATURE.
S9R5: *TEMPERATURE.
STRI3: *TEMPERATURE.
STRI65: *TEMPERATURE.
SAXA11: BX, BZ, HP, P.
SAXA12: BX, BZ, HP, P.
SAXA13: BX, BZ, HP, P.
SAXA14: BX, BZ, HP, P.
SAXA21: BX, BZ, HP, P.
SAXA22: BX, BZ, HP, P.
SAXA23: BX, BZ, HP, P.
SAXA24: BX, BZ, HP, P.
Model:
Length | 1.0 |
Area | 0.1 |
Centrifugal axis of rotation | (0, 1, 0) through (.5, 0, 0) |
Gravitational load vector | (0, –1, 0) |
Material:
Initial conditions:
BX, BY, CENT, CENTRIF, GRAV, *TEMPERATURE.
CORIO.
CORIO.
ROTA.
BX, BY, CENT, CENTRIF, GRAV, *TEMPERATURE.
CORIO.
ROTA.
BX, BY, CENT, CENTRIF, GRAV, *TEMPERATURE.
CORIO.
CORIO.
ROTA.
BX, BY, CENT, CENTRIF, GRAV, *TEMPERATURE.
CORIO.
ROTA.
BX, BY, BZ, CENT, CENTRIF, GRAV, *TEMPERATURE.
CORIO.
CORIO.
ROTA.
BX, BY, BZ, CENT, CENTRIF, GRAV, *TEMPERATURE.
CORIO.
ROTA.
BX, BY, BZ, CENT, CENTRIF, GRAV, *TEMPERATURE.
CORIO.
CORIO.
ROTA.
BX, BY, BZ, CENT, CENTRIF, GRAV, *TEMPERATURE.
CORIO.
ROTA.
Model:
This section lists a number of simple tests that verify the field expansion capability. In most cases a single element or a small assembly of elements is loaded using the field expansion capability.
Material:
All tests use a linear elastic material model. In all cases a field expansion coefficient is defined and associated with at least one, and in some cases more than one, predefined field variable.
Initial conditions:
In all tests the initial value of all relevant field variables is assumed to be zero at all the nodes.
The results for loading based on field expansion match those obtained from a similar model using thermal expansion. The one-dimensional elements are subjected to field and thermal expansion while fully constrained, and the results have been verified by analytical means.
S4R element using a linear elastic material model and loaded with both field and thermal expansion.
SC8R element using a linear elastic material model and loaded with field expansion driven by a single field variable. Tests nonlinear static and linear perturbation steps.
M3D4R element using a linear elastic material model and loaded with both field and thermal expansion.
S8R5 element using an elastic material model loaded with field expansion driven by a single field variable. Tests Riks procedure and produces same result as buckleplate_s8r5_riks.inp in “Buckling of a simply supported square plate,” Section 1.2.4 of the Abaqus Benchmarks Guide.
T2D2 element using a linear elastic material model loaded with both field and thermal expansions. The field expansion behavior is driven by three different field variables. Tests proper interpolation of temperature and predefined field-variable-dependent material data defining field expansion coefficient.
T2D2 element using a linear elastic material model loaded with both field and thermal expansions. The field expansion behavior is driven by two different field variables. The thermal expansion coefficient and the two field expansion coefficients are assumed to be associated with a nonzero reference temperature and nonzero reference field variable values, respectively.
T2D2 element using a linear elastic material model loaded with field expansion defined using user subroutine UEXPAN.